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Chapter 1

Introduction

This thesis is a system theoretical exploration of optimal samplers, downsamplers

and interpolators (holds).

1.1 Motivation

Message or signal communication, storage and analysis are some of the oldest

needs of a society. A signal or message is the information that needs to be pro-

cessed (i.e transmitted or stored etc.) over time or space. If a signal varies contin-

uously with time/space then such a signal is called an analog (or continuous time)

signal. Most of the signals (e.g. voice, seismic data) are analog in nature. On the

other hand if information is just coming at discrete time/space instants then such a

signal is called a discrete signal. If a discrete signal can have values from a finite

set, then the discrete signal is called a digital signal. A system is a fundamental

part of the signal processing. It is a device that processes a signal to give a desired

output. If a system processes an analog signal entirely in the analog domain then

the system is an analog system (or continuous-time system) and the whole process

is called analog signal processing. On the other hand if a system processes a dig-

ital (or discrete) signal entirely in the digital (or discrete) domain then the system

is a discrete system and the whole process is known as digital (or discrete) signal

processing. If a system processes signal in a mixture of digital/discrete and analog

domain then it is a hybrid system.

The use of electrical signals for message transmission in the nineteenth century

increased the efficiency of the signal processing. At that time most of the systems

were analog. However, in the mid twentieth century with the advent of modern

integrated circuits the cost of digital signal processing (DSP) reduced significantly.

Even though we lose information in the analog to digital conversion, DSP provides

better quality, ease of implementation, reconfigurability, ease of storage, lower

cost, etc. As a result, DSP started to replace analog signal processing in most of

the applications. This is the trend till now.
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u ū yȳ
H SW̄

Figure 1.1: Signal reconstruction setup

The fundamental problem in DSP is the signal reconstruction problem. Here

the main aim is to recover an analog signal from its samples with minimal error.

The signal reconstruction setup is shown in Figure 1.1. Here a sampler S sam-

ples an analog signal y to produce the discrete signal ȳ. The discrete signal ȳ is

processed by a discrete system W̄ . The discrete system can do various jobs on

the discrete signals like filtering noise etc. The output ū of the discrete system is

converted back to an analog signal by a hold (interpolator or D/A converter) H.

The main aim in the signal reconstruction problem is to make the reconstructed

signal u as close as possible to the analog signal y. Normally digital signals are

quantized after sampling. However, for simplicity the quantization errors are not

taken into account in the signal reconstruction problem that we consider in this

thesis.

A sampling operation typically means loss of information. Therefore, an inter-

esting question is whether it is possible to reconstruct the original analog signal y

exactly from its samples by a suitable choice of hold and the discrete system. One

famous answer to the above question is Shannon’s theorem and it depends upon

the sampling period and the bandwidth of the original analog signal y:

Theorem 1.1.1 (see [49, 60, 42]). Let y(t) be a signal whose Fourier transform

Y (jω) exists. If y(t) is bandlimited to ωB rad/sec, i.e. Y (jω) = 0 ∀|ω| ≥ ωB then

y(t) =
∑

k∈Z

y(k
π

ωB

) sinc
(ωB

π
t − k

)

where sinc(t) = sin(π t)
π t

.

Assume that in the signal reconstruction problem our analog signal y is ideally

sampled with sampling period h i.e. ȳ[k] = y(kh) and that y is bandlimited to

ωN := π
h

. The frequency ωN is known as the Nyquist frequency associated with

the sampling period h. Using Shannon’s theorem it is straightforward to prove that

the discrete system W̄ = I and the following hold

u = Hū : u(t) =
∑

k∈Z

ū(kh) sinc

(

t

h
− k

)

(1.1)

leads to perfect reconstruction i.e. u = y. The selection of the discrete system

W̄ = I is arbitrary because it can be shown that the discrete filter can be embedded

in either the hold or sampler (see [31] or Section 2.2.4). Therefore, in the rest of

the chapter we skip this discrete system.
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Figure 1.2: Sampled-data setup

The Shannon theorem works perfectly for bandlimited signals but most of the

signals in nature are not bandlimited. Sampling of these type of signals often re-

sults in aliasing. A signal is aliased to another signal if ideal sampling of these

two signals result in indistinguishable discrete signals. To circumvent this prob-

lem analog signals before sampling are passed through a low-pass filter that is

bandlimited to the Nyquist frequency. This will lead to exact reconstruction, how-

ever at the cost of throwing away a lot of information available in the frequency

bands that are filtered away. This leads to the following interesting questions.

• Is the use of a low-pass filter bandlimited to the Nyquist frequency optimal?

• If not, then what is the optimal way to do sampling and interpolation?

• How much of the information is lost in sampling and interpolation?

• What is the theoretical minimum of information lost in the sampling opera-

tion?

To answer these questions in general, researchers started looking at these prob-

lems as mathematical optimization problems from a system theoretical viewpoint

(see Sun et al. [55] and Unser [59]). The Sampled data system theory is a system

theoretical method that treats discrete and analog signals in a common framework.

This theory was first applied in the signal reconstruction problem in 1996 by

Khargonekar and Yamamoto [23] (in 1995, Chen and Francis [56] applied the

sampled-data system theory to the signal reconstruction problem entirely in the

discrete domain). Instead of aiming at exact reconstruction as in the Shannon case,

minimization of the error without throwing away any frequencies is the main cri-

terion in the signal reconstruction using sampled-data system theory. Khargonekar

and Yamamoto [23] used a sampled-data setup similar to the setup shown below.

The distinctive feature of the sampled-data setup shown in Figure 1.2 is that it op-

timizes the analog performance. This setup is much closer to reality as most of the

signals we use are analog in nature and utilized in the analog domain.

In the sampled-data setup shown in Figure 1.2, a signal model or signal gener-

ator G is used to represent the information that we know about our analog signal

y and v . This is an another distinctive feature of sampled-data system theory. For

example, if we are processing audible signals then we know that the spectrum of

these signals lies in between 20 Hertz to 20 kilo Hertz. Then G can be a band-

pass filter with passband 20 Hertz to 20 kilo Hertz. Moreover, if we know that
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the signals we are going to process is human speech then 250 Hertz to 4000 Hertz

bandpass filter is sufficient. Key point here is that the reconstruction performance

increases if G contains more information about the signals y and v (see [7] for

more detail). In the sampled-data setup, we sample our original signal y using a

sampler S. The resulting signal after it is processed by discrete system W̄ is re-

constructed back to the analog domain by an hold H. This reconstructed signal u

is compared with signal v to compute error e := v − u. In most of the applications

v is the same as y but for a generic treatment of signal reconstruction problem v

may be taken different from y. Throughout this thesis we assume that the signal

model G is given. The Shannon case is a special case of the sampled-data signal

reconstruction problem shown in Figure 1.2 where G is fixed as an ideal low pass

filter bandlimited to the Nyquist frequency.

Any system whose present output depends upon the future inputs is known as

non-causal. In contrary, a causal system does not have access to future. Any ideal

low pass filter is not practically realizable because its present output depends upon

all of the future inputs. This is an another limitation of the Shannon’s theorem.

Starting from [23] in 1996, sampled data system theory is applied to several sig-

nal processing applications using different error criteria with or without causality

constraints. For example downsampling with causality constraints (using fast sam-

pler/fast hold approximation) is treated in [20, 43, 41], audio compression in [1],

image application in [22] etc. For a complete list of applications see the review

paper by Yamamoto et al. [66].

We know that if the analog input signal is bandlimited and we are free to choose

the sampler and hold then by Shannon’s sampling theorem we have zero recon-

struction error if our sampler is the ideal sampler and our hold is given by (1.1).

Therefore, they are optimal in this case. However, if the input analog signal y is

not bandlimited then passing it through an ideal low-pass filter (bandlimited to the

Nyquist frequency) before ideally sampling and using the hold in (1.1), is also op-

timal (in some norm sense). This is proved in [59,58,31] where [31] used sampled-

data system theory. Meinsma and Mirkin [31] also applied sampled-data system

theory to the cases where a non-causal sampler (or hold) is fixed and we have to

design hold (or sampler) [31]. They also designed relaxed causal (i.e. with limited

access to future) hold given a sampler using sampled data system theory [29].

1.2 Problem formulation

The main objective in this research is to solve some of the signal processing prob-

lems using the sampled data system theory. Generally the design of filters in signal

processing is done either in discrete or in analog domain. However, in most of the

signal processing applications (e.g. audio processing) nowadays the primary in-

formation is in analog format and utilized in analog domain at the end but the

information is processed digitally. The situation is depicted in Figure 1.2. In these

signal processing applications, we are interested in minimizing the reconstruction

error e (which is analog) but internally the information is processed digitally. Such
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Figure 1.3: Downsampling in sampled-data setting

a system can be analyzed and designed using Shannon’s theorem however then we

have to restrict our input signals y to just bandlimited signals (i.e. the signal model

G is a bandlimited system). System theoretic methods are useful to generalize anal-

ysis of such a systems with a generic class of input signals y. In these methods,

sampler, hold and the signal models are treated as operators or systems operat-

ing on the signals in fairly large class. System theoretic method such as sample

data system theory enables us to analyze the signal processing setup shown Fig-

ure 1.2 containing samplers, holds and signal models in a common framework.

This approach also helps us in the analysis and design in a unified manner for both

stochastic and deterministic signals [3, 2]. Another advantage of using sampled-

data system theory in the design process is that we can calculate the reconstruction

error without any practical implementation.

The reconstruction error gives us a criteria to measure the performance of our

design. It is shown in [31] that frequency truncated norms naturally arise in signal

processing via sample-data system theory. Direct integration for these type of

norms is often time consuming, therefore it is preferred to have a closed form

expressions for the frequency truncated norms. The first aim of this research is to

obtain a closed form expressions for the frequency truncated norm.

Sample data system theory has been used in solving several problems in signal

processing in a generic way. Some of these problems are already answered in

[29, 23, 66] and the references therein. In this thesis, we use sample-data system

theory to obtain a generic solution of downsampling and optimal relaxed causal

sampling problems.

Downsampling of the sampled signal is required in several signal process-

ing applications. Downsampling can be achieved by a use of downsampler S̄h

in between sampler and hold which reduces the sampling rate of its input dis-

crete signal by some integer factor (see Figure 1.3). The downsampling problem

we consider is to design the downsampler and the hold given the sampler and

the signal model. Earlier most of the approaches were somehow based on Shan-

non’s sampling theorem (i.e. by bandlimiting the signal model G). As an alterna-

tive, [20,41,42] used sampled-data system theory to solve downsampling problems

using fast-sample/fast-hold approximation. Meinsma and Mirkin [31] solved the

downsampling problem in a generic sample-data framework however for a limited

class of signal models. To move further, we consider the downsampling problem

with all linear continuous time invariant (LCTI) signal models. Hence, the second
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aim of this research is to obtain a solution for the downsampling problem with

linear continuous time invariant signal models.

In the signal reconstruction problem, non-causal samplers given a hold and

signal model can be designed by the method explained in [31]. Even though non-

causal solutions are important in obtaining limiting behavior of our systems, it is

not always practical. In practice, our system must be causal or relaxed causal. The

design of an optimal causal sampler using sampled-data system theory is discussed

in [37, 38, 43]. Relaxed causality means that we have some limited access to the

future inputs. The constraint of relaxed causality makes our problem quite a bit

more difficult, but interesting also. The third aim of this research is to provide

a frequency domain abstract and state space solution to optimal sampler design

problem with relaxed causality constraint.

1.3 Overview of the thesis

This sections contains an overview of the chapters in this thesis.

Chapter 2: Sampled-data system theory

This chapter mainly contains the fundamentals of the sampled-data system theory.

Most of the content in this chapter is from [30]. However, this chapter also takes

inspiration from important work like [3], [2], [66], [57]. Signal generators or signal

models, samplers, holds are important components in the sampled data system

theory. Details of these components are discussed in this chapter. This chapter

also contains the concept of lifting, lifting transforms, signal and system norms

which serves as a foundation to the later chapters.

Chapter 3: Frequency truncated norms

This chapter contains a method to express frequency truncated norms in terms of

the matrix logarithm. The results is this chapter can be applied in other areas of

system theory like model reduction.

Chapter 4: Non-causal downsampling

This chapter concentrates on the downsampling problem using sampled data sys-

tem theory. It contains a general formulation and solution of optimal downsampling

in the sampled-data setup for all linear continuous time invariant signal models.

Here we allow non-causal solutions. The effect of noise on the downsampling is

also discussed in this chapter.

Chapter 5: Relaxed causal sampling

This chapter concentrates on the optimal relaxed causal sampler design. In this

chapter, we provide a frequency domain abstract solution to optimal sampler de-
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sign with relaxed causality constraint. Mirkin [35, 36] introduced STPBC (state-

space with two-point boundary condition) representations for linear h-time shift

invariant system. We also discuss this representation in detail. This representation

is useful in obtaining a closed form solution of the optimal sampler with relaxed

causality constraint. We also give an expression for the minimal error norm for the

optimal sampler.

Chapter 6: Conclusions and Recommendations

This small chapter contains a summary of the important results in this thesis. It

also contains some notes on the further research related to the topics discussed in

this thesis.

1.4 Overview of contributions

The research objectives that are met in this thesis are

1. A closed form expression for the frequency truncated norms in terms of

matrix logarithm for systems given in the state-space.

2. A system theoretical analysis of the downsampling problem, and design

of optimal non-casual downsamplers and hold. The effect of noise on the

downsampling problem is also analyzed, and optimal non-casual downsam-

plers and hold are designed in the presence of noise.

3. A frequency domain abstract and state-space solution to optimal sampler

design problem with relaxed causality constraint. A method for calculation

of the reconstruction error is also obtained.





Chapter 2

Sampled-data system theory

To obtain the analog signal (at least approximately) from its samples is the pri-

mary aim in signal reconstruction. Sampled data system theory facilitates us in

reconstruction and to measure the error of signal reconstruction (see Chapter 1).

This chapter contains a general introduction to sampled-data system theory and

serves as background material for the later chapters. Specifically, in this chapter

we study the sampled data setup shown in Figure 2.3 (on page 11) for the signal

reconstruction. Our main aim in this chapter is to describe all components of the

sampled-data setup in a mathematical way. We also discuss the concept of lifting,

lifting transforms, and signal and system norm that are useful for later chapters.

Most of the theory discussed in this chapter is based on the paper by Meinsma and

Mirkin [30]. Further details on the topics discussed in this chapter can be found

in [66, 57, 3, 2] and the references therein.

2.1 Notation

Due to various systems, spaces and transforms in this chapter, it is useful to sum-

marize all the notations in one place. The meaning of these systems, domains and

transforms will be cleared in the later sections.

In this thesis, we represent systems by uppercase letters and signals by lower-

case letters.

A system in the time domain is represented by calligraphic letter e.g. G. A sys-

tem in the lifted time domain is represented by calligraphic letter with a breve on

top e.g. Ğ. A system in the lifted frequency domain is represented by capital letter

with a breve on top e.g. Ğ. A linear continuous time invariant (LCTI) system in the

classic frequency domain is represented by capital letter e.g. G(jω). A hold in the

lifted time domain is represented by calligraphic letter with a grave on top e.g. H̀.

A hold in the lifted frequency domain is represented by capital letter with a grave

on top e.g. H̀ . A sampler in the lifted time domain is represented by calligraphic

letter with an acute on top e.g. Ś. A sampler in the lifted frequency domain is
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lifted lifted classic

time time frequency frequency

System domain domain domain domain

Analog G Ğ Ğ

LCTI G Ğ Ğ G

Hold H H̀ H̀

Sampler S Ś Ś

Discrete W̄ W̄ W̄ W̄

Table 2.1: Notations for systems in different domains

represented by capital letter with an acute on top e.g. Ś. Now, we summarize the

notations for different systems in table 2.1. Here an analog system maps an analog

signal to an analog signal and a discrete system maps a discrete signal to a discrete

signal. The definition of a sampler, hold and LCTI systems is given later in this

chapter.

An analog or continuous signal is represented by lowercase letter e.g. y. A

discrete signal is represented by a bar on top e.g. ȳ. Square brackets are used to

denote the value of a discrete signal at a given integer e.g. ȳ[k] whereas parenthesis

are used to denote the value of an analog signal at a given time e.g. y(t). An

analog (or discrete) signal in the lifted domain is represented by y̆ (or ȳ). In an

apologetic way, the lifted z-transform of a continuous (or discrete) signal y (or ȳ)

is represented by y̆ (or ȳ) with a suffix (z). Similarly, the lifted Fourier transform

of a continuous (or discrete) signal y (or ȳ) is represented by y̆ (or ȳ) with a suffix

(ejθ ). Most of the time it is clear from the context if the signal is in the lifted (time)

domain or lifted frequency domain (z-transform or Fourier transform). In case it is

really necessary to make a distinction, we use Z( y̆) (or Z( ȳ)) for the z-transform

of lifted signal y̆ (or ȳ). Similarly, we use F( y̆) (or F( ȳ)) for the Fourier transform

of lifted signal y̆ (or ȳ).

With a little bit of overloading the notations, the classic continuous (or discrete)

time Fourier transform of an analog signal y (or a discrete signal ȳ) is represented

with different arguments as y(jω) (or ȳ(ejθ )). Most of the time the signal domain

is clear from the context. Sometimes to make distinction between y(jω) and the

time domain y(t) (or due to historic reasons) we represent the classic continuous

(or discrete) time Fourier transform of y (or ȳ) in capitals as Y (jω) (or Ȳ (ejθ )).

The notations used for signals is summarized in table 2.2 (page 11).

For general discussions (applicable to all type of systems) we put sometimes

the tilde on top of the system name to denote all lifted linear h-time shift invariant

system or shift invariant discrete system including samplers and holds also. Time

domain, lifted domain and lifted frequency domain systems are differentiated by

usual notation given in this section. For example, the time domain systems are

represented by G (including discrete systems also), lifted time domain systems
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lifted lifted classic

time time Fourier lifted frequency

Signal domain domain domain z-domain domain

Continuous y y̆ y̆(ejθ ),F( y̆) y̆(z),Z( y̆) y(jω),Y (jω)

Discrete ȳ ȳ ȳ(ejθ ),F( ȳ) ȳ(z),Z( ȳ) ȳ(ejθ ),Ȳ (ejθ )

Table 2.2: Notations for signals in different domains

are represented by G̃ and lifted frequency domain systems are represented by G̃.

Similarly ·̃ is used to denote all lifted analog or discrete signals. For example, a

time domain signal y or ȳ in the lifted domain is represented by ỹ.

2.2 Sampled-data system

Ge

we

ū ȳ y

v

u H W̄ S

G
-

Figure 2.3: Sampled-data setup

The sampled-data setup shown in Figure 2.3 is fundamental to about all prob-

lems that are considered in this thesis. The setup consists of an analog system G

known as signal generator or model, a discrete system W̄ , a sampler S and a hold

H. In this section, we go through these systems one by one.

2.2.1 Signal Generator

As discussed in Chapter 1, signal generators can be used to model our apiori

knowledge about signals v and y. This apriori knowledge can be about bandwidth,

cross-correlation, spectral density etc. of v and y. A detailed discussion about

signal generator is given in [30, 7].

In this thesis, we assume that the signal generator G which maps an analog

signal w : R → Cnw to y : R → Cny , is linear and h-time shift invariant. Here

nw and ny are positive integers. Linearity means G satisfies the additivity and

homogeneity properties [27]. The h-time shift invariance of a system means that if

we delay the system input by kh (k ∈ Z) then the system output is also delayed by

kh. As given in [27, 30], linearity implies that the output y of the system G driven
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by input w is of the form

y(t) =
∫ ∞

−∞
g(t, s)w(s)ds (2.1)

for some kernel g(t, s) and h-time shift invariance of the system G implies that the

kernel g(t, s) satisfies

g(t, s) = g(t + kh, s + kh)

for all k ∈ Z. In this thesis h is fixed, therefore the linear h-time shift invariant

systems are sometimes called linear discrete time invariant (LDTI) systems.

An h-time shift invariant system is not necessarily h′-time shift invariant if

h′ 6= kh where k is a positive integer. However, if the system is h′-time shift

invariant for every h′ ∈ R, then it is called linear continuous time invariant (LCTI).

In other words, G is LCTI iff it is of the form (2.1) with kernel g(t, s) = g(t−s, 0).

In this case, g(t − s) := g(t − s, 0) and g(r), r ∈ R is known as as the impulse

response of the LCTI system [27].

2.2.2 Sampler

A sampler S is a system that maps an analog signal y : R → Cny to a discrete

signal ȳ : Z → Cn ȳ . Here ny and n ȳ are positive integers. We assume that the

sampler is linear and h-time shift invariant. Here h-time shift invariance means

that if we delay the sampler’s analog input by h then its discrete output is delayed

by one. Every such sampler is of the form

ȳ = S y : ȳ[n] =
∫ ∞

−∞
ψ(nh − s)y(s) ds (2.2)

for some function ψ(t). The function ψ(t) known as the sampling function of

sampler S and h is known as the sampling period. Although the proof of (2.2) is

standard, for completeness it is given Appendix 2.A (page 34).

Example 2.2.1. The ideal sampler Sidl is an example of a sampler and it is given

by

ȳ = Sidl y : ȳ[n] = y(nh). (2.3)

In this case, the ideal sampler can be written in the form (2.2) with the sampling

function ψ(t) = δ(t).

Note that the sampler S in (2.2) can be written as a cascade of an LCTI system

with impulse response ψ(t) and the above ideal sampler Sidl as

ȳ = Sidl(ψ ∗ y)

where convolution is defined as (ψ ∗ y)(t) :=
∫∞
−∞ ψ(t − s)y(s)ds for all t ∈ R.
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2.2.3 Hold

A hold is a system which converts a discrete signal ū : Z → Cnū back to an

analog signal u : R → Cnu . Here nū and nu are positive integers. Note that the

input dimension nū can be different from the output dimension nu of the hold. We

assume that H is linear and h-time shift invariant. Here h-time shift invariance

means that if we delay the hold’s discrete input by one then its analog output is

delayed by h. Every such hold is of the form

u = Hū : u(t) =
∑

n∈Z

φ(t − nh)ū[n], t ∈ R (2.4)

for some function φ(t) known as the hold function or interpolating kernel. The

derivation of (2.4) is standard and it is given Appendix 2.A (page 35) for reference

purpose.

Example 2.2.2. A generalized zero order hold Hz is an example of a hold and it

is given by

u = Hzū : u(t) = φz

(

t −
⌊

t

h

⌋

h

)

ū

[⌊

t

h

⌋]

, t ∈ R. (2.5)

where ⌊t⌋ denotes the largest integer less than or equal to t and φz : [0, h) → Cnu .

In this case, the hold function is

φ(t) :=
{

φz(t) t ∈ [0, h)

0 t /∈ [0, h)
.

The ideal zero order hold Hiz is a special case of the zero order hold Hz where

φ(t) = 1[0,h)(t) and it is given by

u = Hizū : u(t) = ū

[⌊

t

h

⌋]

, t ∈ R. (2.6)

Note that the hold H in (2.4) can be written as an LCTI system with impulse

response φ(t), preceded by a modulated impulse train as

u(t) =
∫ ∞

−∞
φ(t − s)

∑

n∈Z

δ(s − nh)ū[n]ds, t ∈ R

=
∑

n∈Z

φ(t − nh)ū[n].

2.2.4 Discrete system

A discrete system W̄ maps a discrete signal ȳ : Z → Cn ȳ to a discrete signal

ū : Z → Cnū . We consider discrete systems which are linear and shift invariant.

Shift invariance means that if we delay the discrete system’s input by one then
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its discrete output is delayed by one. Every such discrete system is given by the

following (discrete) convolution,

ū = W̄ ȳ : ū[n] =
∑

k∈Z

w̄[n − k]ȳ[k], (2.7)

where w̄[k] is known as impulse response of W̄ . If w̄[k] = 0∀k 6= 0 then such a

discrete system is called static discrete system.

In the sampled-data system theory, the time between the samples plays an im-

portant role. Therefore a shift invariant discrete system which maps a discrete

signal with period h to a discrete signal with period h is also called h-time shift

invariant.

The discrete system can be absorbed in the sampler or hold by redefining the

sampling or hold function in the sampled-data setup as shown in following corol-

lary.

Corollary 2.2.3. Let S, H and W̄ be as in (2.2), (2.4), and (2.7) respectively.

Then, the series interconnection HW̄ is a hold with hold function
∑

i∈Z φ(t −
ih)w̄[i] and the series interconnection W̄S is a sampler with sampling function
∑

i∈Z w̄[i]ψ(t − ih).

Proof. See Appendix 2.A (page 35).

By Corollary 2.2.3, any discrete system following a sampler or preceding a

hold can be merged in the sampler or the hold. Therefore, most of the time we

consider W̄ = I (i.e. with impulse response w̄[k] = δ̄[k]) without loss of general-

ity in the sampled data setup.

2.3 Lifting

Lifting is now standard in sampled-data literature (see [23, 30, 57] and the refer-

ences there in for more details). In this section, we give a brief overview of lifting

techniques.

2.3.1 Lifting in time domain

Consider a linear h-time shift invariant system G given in (2.1). In order to define

the transfer function of such a system, we lift input w and output y of the system

G. The lifting of an analog/continuous time signal is defined as follows.

Definition 2.3.1. For a continuous time signal f : R → Cn , the lifted signal

f̆ : Z → {[0, h) → Cn} is the sequence of functions { f̆ [k]} defined as

f̆ [k](τ ) := f (kh + τ ), k ∈ Z, τ ∈ [0, h).

In this context, h is known as the lifting period.
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k →−2

f̆ [-2]

0 h

−1

f̆ [-1]

0 h

0

f̆ [0]

0 h

1

f̆ [1]

0 h

t →
−2h

−h 0 h

2h

f (t)

Figure 2.4: Time domain lifting of f (t) = sinc(t/h) := sin(π t/h)
π t/h

.

Remark 2.3.2. The natural domain for τ is [0, h) because then there exists a

bijection between the signal f and its lifted signal f̆ . However, sometimes it is

beneficial to define f̆ [k](τ ) := f (kh + τ ) for arbitrary τ ∈ R.

Figure 2.4 explains the idea of lifting. It is clear from Definition 2.3.1 that

lifting is an invertible process. Sometimes the lifting in Definition 2.3.1 is called

continuous lifting or analog lifting.

Remark 2.3.3. In this thesis, unless mentioned differently, lifting always means

lifting with lifting period h which is also the sampling period of the sampler in

(2.2). However, theoretically lifting can be done for intervals different from the

sampling period of the sampler.

Remark 2.3.4. A discrete signal (generated by sampling of an analog signal with

sampling period h) can be thought of as a sequence whose elements are separated

by h time. Therefore, lifting (with lifting period h) of such a discrete signal is

defined as the discrete signal itself. However, the sampling period plays a crucial

role here. For example if our discrete signal ȳ is generated by sampling an analog

signal y with sampling period h/4. Then we have four samples in the interval h.

Therefore lifting (with lifting period h) is a sequence whose elements contain four

samples (see Figure 4.5). Discrete lifting is discussed in more detail in Chapter 4.

Since in this chapter we always perform lifting with respect to the sampling period

i.e. the lifting period and the sampling period are the same, discrete signal (say ȳ)

and the lifted discrete signal are the same. Hence, discrete signal and the lifted

discrete signal are represented by the same symbol ȳ.

Lifting the input and the output of a system will naturally define the lifting of

the system. In the rest of this section, we define the lifted analog system, hold and

sampler.
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If y = Gw, then we denote the mapping from the lifted w to the lifted y by Ğ

i.e. y̆ = Ğw̆. It is shown in [30, §3] that if G given in (2.1) is linear h-time shift

invariant then

y̆ = Ğw̆ : y̆[k] =
∑

i∈Z

Ğ[k − i]w̆[i], k ∈ Z (2.8)

where Ğ[k] : {[0, h) → Cnw } → {[0, h) → Cny } is the lifted impulse response

system of the system Ğ given by

(Ğ[k]x)(τ ) =
∫ h

0

g(kh + τ, σ )x(σ ) dσ τ ∈ [0, h). (2.9)

Linear continuous time invariant (LCTI) systems are special cases of linear h-

time shift invariant systems. If G is LCTI, then the lifted impulse response system

Ğ[k] of lifted system Ğ given in (2.8) is given by

(Ğ[k]w̆)(τ ) =
∫ h

0

g(kh + τ − σ)w̆(σ ) dσ τ ∈ [0, h), (2.10)

where g(t) is the impulse response of the LCTI system G. The word system is used

in lifted impulse response system to emphasize the fact that Ğ[k] is an operator.

Example 2.3.5. Let G be the LCTI system with impulse response

g(t) := 1[0,h)(t).

Then the kernel g(kh + τ − σ) of the lifted impulse response system Ğ[k] is given

by

g(kh + τ − σ) =











1[0,h)(τ − σ) k = 0

1[−h,0)(τ − σ) k = 1

0 elsewhere

Note that τ, σ ∈ [0, h).

Lifting the input y and output ȳ of a sampler S in (2.2) gives a lifted sampler

ȳ = Ś y̆ : ȳ[k] =
∑

i∈Z

Ś[k − i]y̆[i] (2.11)

where Ś[k] : {[0, h) → Cny } → Cn ȳ is the lifted impulse response system of the

lifted system Ś given by

Ś[k]x =
∫ h

0

ψ(kh − σ)x(σ ) dσ.



2.3. Lifting 17

Similarly, lifting the input ū and the output u of a hold H in (2.4) gives a lifted

hold

ŭ = H̀ū : ŭ[k] =
∑

i∈Z

H̀[k − i]ū[i] (2.12)

where H̀[k] : Cnū → {[0, h) → Cnu } is the lifted impulse response system of the

lifted system H̀ given by

(H̀[k]x̄)(τ ) := φ̆(τ )x̄, τ ∈ [0, h).

Shift invariance of a lifted system means that if its lifted input is delayed by

1, then its lifted output is delayed by 1 as well. Shift invariance of the lifted

systems Ğ, Ś and H̀ is the consequence of the fact that the corresponding time

domain systems G, S, and H are h-time shift invariant [30]. However, the advan-

tage with the lifted system is that they behave like shift-invariant discrete systems

(see (2.20),(2.22), (2.23)). Therefore, we can expect that most of the theory for

a discrete system may have something analogous (e.g. convolution, z and Fourier

transforms) for the lifted system as well. This is indeed the case as we will see in

later sections.

Now we consider the cascade of two h-time shift invariant systems G1 and G2

with kernel g1 and g2 respectively. Using (2.1), we have

y = G1G2w : y(t) =
∫ ∞

−∞

∫ ∞

−∞
g1(t, s)g2(s, r)w(r) dr ds (2.13)

where t ∈ R. Using (2.8), it can be proved that the seemingly difficult integration

in (2.13) is transformed to the following discrete convolution in the lifted domain

y̆ = Ğ1Ğ2ŭ : y̆[k] =
∑

n∈Z

∑

i∈Z

Ğ1[k − i]Ğ2[i − n]ŭ[n] (2.14)

where Ği [k], k ∈ Z is the lifted impulse response system of the lifted system Ği .

Let Ğ3[k] := ∑

i∈Z Ğ1[k − i]Ğ2[i] then (2.14) is equivalent to

y̆ = Ğ1Ğ2ŭ : y̆[k] =
∑

n∈Z

Ğ3[k − n]ŭ[n].

Therefore, lifting translates the series interconnection into a familiar convolution.

Thus lifting puts the inter-sample behavior of the system in the background in

such a way that we can treat the lifted system as a linear shift invariant discrete

system. However, the inter-sample behavior of the system is not lost after lifting.

The advantage of lifting is that we can use convolution (as shown in this section).

However, this advantage come at the price of difficult impulse responses.

2.3.2 Lifting in frequency domain

After lifting, a linear h-time shift invariant system can be treated like linear shift-

invariant discrete systems. Therefore we can apply frequency domain methods to

these systems. In this section we define the z-transform and the Fourier transform

of signals and systems.
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Lifted z and Fourier transform

As lifted signals are sequences, we define the (lifted) z-transform of lifted signals

as

Definition 2.3.6. The z-transform Z( f̆ ) of a lifted signal f̆ is defined as

Z( f̆ ) = f̆ (z; τ ) :=
∑

k∈Z

f̆ [k](τ )z−k =
∑

k∈Z

f (kh + τ )z−k (2.15)

where τ ∈ [0, h). Z( f̆ ) is also called lifted z-transform of the signal f .

Remark 2.3.7. As discussed in Remark 2.3.4, in this chapter the lifting period and

the sampling period are the same. Therefore, the discrete signal (say ȳ) and the

lifted discrete signal are same. For this reason, the lifted z-transform of such a

signal is represented by ȳ(z).

Similarly the (lifted) Fourier transform is defined as:

Definition 2.3.8. The Fourier transform F( f̆ ) of a lifted signal f̆ is defined as

F( f̆ ) = f̆ (ejθ ; τ ) :=
∑

k∈Z

f̆ [k](τ )e−jθk =
∑

k∈Z

f (kh + τ )e−jθk (2.16)

where τ ∈ [0, h). F( f̆ ) is also called lifted Fourier transform of the signal f .

Clearly, for a given τ , f̆ (ejθ ; τ ) is the discrete time Fourier transform [27] of

the sequence f̆ [k](τ ) and f̆ (ejθ ; τ ) is periodic in θ with period 2π .

In most of the cases we deal with real signals. However, most of the results

in later chapters are formulated in the lifted frequency domain. To check whether

a given lifted Fourier transform corresponds to a real signal or not, the following

straight-forward result is useful.

Corollary 2.3.9. If the lifted Fourier transform f̆ (ejθ ; τ ) of a signal f exists then

f is real if and only if f̆ (ejθ ; τ ) = f̆ (e−jθ , τ ) for all θ ∈ [−π, π ] and τ ∈ [0, h).

Proof. See Appendix 2.A (page 35).

So far we were bit sloppy about the existence of Fourier transforms and z-

transform. However, for the following important result which is similar to Poisson

summation formula, the existence of various transforms do matter [30, 6].

Theorem 2.3.10 (Key lifting formula [30]). Let f be an analog signal such that

f (t)e−s0t belongs to L2(R) for some s0 ∈ C. Then the two-sided Laplace trans-

form F(s) of f (t) exists and we have the following properties

f̆ (es0h ; τ ) = 1

h

∑

k∈Z

F(sk)e
skτ (2.17a)

F(sk) =
∫ h

0

f̆ (es0h ; τ )e−skτ dτ (2.17b)

for all τ ∈ [0, h), where sk := s0 + j 2πk
h

.
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f (t) f̆ [k](τ )

f̆ (ejθ ; τ )F(jω)

Figure 2.5: Relation between various transforms and Key lifting

formula.

Proof. See [30].

Equation (2.17) relates the (lifted) z-transform (for z = es0) with the Laplace

transform and can be interpreted as a bijection between {F(sk)}k∈Z and f̆ (es0 ; τ ).
As a special case, when s0 = jθ

h
, we have the bijection between the (lifted) Fourier

transform and the classical Fourier transform:

f̆ (ejθ ; τ ) = 1

h

∑

k∈Z

F(jωk)e
jωkτ (2.18a)

F(jωk) =
∫ h

0

f̆ (ejθ ; τ )e−jωkτ dτ (2.18b)

where ωk := θ+2πk
h

. For further detail and applications of the key lifting formula

see [30, §IV.A]. Figure 2.5 explains the relation between the various transforms

and the Key lifting formula.

Remark 2.3.11. The equalities in (2.17a) and (2.18a) are in the L2 sense.

Transfer function

The transfer function of a linear h-time shift invariant system G is defined as the

z-transform of its lifted impulse response system

Ğ(z) :=
∑

k∈Z

Ğ[k]z−k . (2.19)

Sometimes we call Ğ(z) as lifted transfer function of G. In the rest of this sec-

tion we define transfer functions for arbitrary linear h-time shift invariant systems,

including samplers and holds. See [30], for more detailed discussion on (lifted)

transfer function.
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Taking the z-transform of the output y̆ and the input w̆ of a lifted system Ğ in

(2.8) results in lifted frequency domain system

Z( y̆) = ĞZ(w̆) : y̆(z) = Ğ(z)w̆(z)

where Ğ(z) : {[0, h) → Cnw } → {[0, h) → Cny } (it is the z-transform of the

lifted impulse response system of the lifted system Ğ) is given by (see [30, §4])

y̆(z) = Ğ(z)w̆(z) : y̆(z; τ ) =
∫ h

0

ğ(z; τ, σ )w̆(z; σ)dσ. (2.20)

Here τ ∈ [0, h) and ğ(z; τ, σ ) is the lifted z-transform of the kernel g(t, s) of G

with respect to its first variable t i.e.

ğ(z; τ, σ ) :=
∑

k∈Z

g(τ + kh, σ )z−k, τ, σ ∈ [0, h). (2.21)

Ğ(z) is called the transfer function of the lifted system Ğ (or lifted transfer function

of G). By the above equation, the transfer function Ğ(z) is an operator whose

kernel is given by ğ(z; τ, σ ). As a special case, if the system G is LCTI (see

(2.10)), then the transfer function Ğ(z) is an operator whose kernel is given by

ğ(z; τ − σ, 0).

Remark 2.3.12. If G is LCTI then ğ(z; τ, σ ) is a function of τ − σ for a given

z where τ, σ ∈ [0, h). However the converse is not true always. Consider the

following system ŭ = Ğw̆ defined as

ŭ(z; τ ) =
∫ h

0

eτ−σ w̆(z; σ)dσ, τ ∈ [0, h)

Here, ğ(z; τ − σ, 0) = eτ−σ is a function of τ − σ . In the time domain we have

u(kh + τ ) =
∫ h

0

eτ−σw(kh + σ)dσ =
∫ kh+h

kh

ekh+τ−sw(s)ds.

Hence,

u(t) =
∫ ∞

−∞
et−s

1[0,h)

(⌈

t

h

⌉

h − s

)

w(s)ds

where ⌈t⌉ is the smallest integer greater than or equal to t. Clearly, the system is

not LCTI.

Example 2.3.13. Let G be as in Example 2.3.5 i.e. G is an LCTI system with

impulse response

g(t) := 1[0,h)(t).

Then, by using (2.21), the lifted transfer function Ğ(z) of G is an operator whose

kernel is given by

ğ(z; τ − σ) = 1[0,h)(τ − σ)+ z−1
1[−h,0)(τ − σ).
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Similarly, taking the z-transform of the output ȳ and the input y̆ of the lifted

sampler Ś in (2.11) results in lifted frequency domain sampler

Z( ȳ) = ŚZ( y̆) : ȳ(z) = Ś(z) y̆(z)

where Ś(z) : {[0, h) → Cny } → Cn ȳ (it is the z-transform of the lifted impulse

response system of the lifted sampler Ś) is given by (see [30, §4])

ȳ(z) = Ś(z) y̆(z) : ȳ(z) =
∫ h

0

ψ̆(z; −σ) y̆(z; σ)dσ. (2.22)

Here ψ̆(z) is the lifted z-transform of the sampling function ψ(t). Ś(z) is called

the transfer function of the lifted sampler Ś (or lifted transfer function of S). By

the above equation, the transfer function Ś(z) is an operator whose kernel is given

by ψ̆(z; −σ).
Similarly, taking the z-transform of the output ŭ and the input ū of the lifted

hold H̀ in (2.12) results in lifted frequency domain hold

Z(ŭ) = H̀Z(ū) : ŭ(z) = H̀(z)ū(z)

where H̀(z) : Cnū → {[0, h) → Cnu } (it is the z-transform of the lifted impulse

response system of the lifted hold H̀) is given by (see [30, §4])

ŭ(z) = H̀(z)ū(z) : ŭ(z; τ ) = φ̆(z; τ )ū(z), τ ∈ [0, h). (2.23)

Here φ̆(z) is the lifted z-transform of the hold function φ(t). H̀(z) is called the

transfer function of the lifted hold H̀ (or lifted transfer function of H).

The advantage of the lifted z-transform is more visible in the series intercon-

nection of two linear h-time shift invariant systems G1 and G2 with transfer func-

tion Ğ1(z) and Ğ2(z) respectively. Using (2.14), it can be proved that the transfer

function of cascade G1G2 is given by the composition Ğ1(z)Ğ2(z).

2.4 Lifted domain spaces and norms

So far with the exception of Key lifting formula, spaces of signals are not dis-

cussed. In this section, we review signal and system norms in various spaces. For

detailed discussion on this topic see [31, 57, 3, 2] and the references therein.

2.4.1 Lifted signal space and norm

ℓ2(B,H) is the Hilbert space of sequences mapping B ⊆ Z to a Hilbert space

H [8, Proposition I.6.2] i.e.

ℓ2(B,H) := { f : B → H |
∑

i∈B

‖ fi‖2
H < ∞}.
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Here f := { fi }i∈B. The inner product in this space is

〈x, y〉 =
∑

i∈Z

〈xi , yi 〉H .

The norm in this space is denoted by ‖ · ‖2.

Remark 2.4.1. We use the shorthand ℓ2(Z) to denote ℓ2(Z,H) if the Hilbert space

H is understood from the context. Whenever B = Z, we just write ℓ2.

L2(B,Cn) is the Hilbert space of square integrable functions f : B → Cn

where B ⊆ R and n is a positive integer. The norm in this space is denoted by

‖ · ‖2. This space has inner product

〈x, y〉 =
∫

B

〈x(τ ), y(τ )〉Cn dτ

Remark 2.4.2. If n is unambiguous/unspecified then we just write L2(B). When-

ever B = R, we just write L2.

Now, consider the norm of an analog signal f ∈ L2,

‖ f ‖2
2 =

∫ ∞

−∞
‖ f (t)‖2

2dt =
∑

k∈Z

∫ h

0

‖ f (kh + τ )‖2
2 dτ

=
∑

k∈Z

∫ h

0

‖ f̆ [k](τ )‖2
2 dτ

=
∑

k∈Z

‖ f̆ [k]‖2
L2[0,h)

=: ‖ f̆ ‖2
2. (2.24)

This defines the norm of a lifted signal f̆ . This also shows that lifting an analog

time signal f ∈ L2, by definition results in a lifted signal f̆ with the same norm

in the Hilbert space ℓ2(Z, L2[0, h)) (L2[0, h) := L2([0, h),Cn)) (see [57, chapter

10], [30], [8, Proposition I.6.2]). The space ℓ2(Z, L2[0, h)) has inner product

〈x̆, y̆〉 =
∑

k∈Z

∫ h

0

〈x̆[k](τ ), y̆[k](τ )〉Cn dτ.

Equation (2.24) also implies that L2 is isomorphic to ℓ2(Z, L2[0, h)) [67,

§7.4]. Therefore, the norms in both of the spaces can be denoted by ‖ · ‖2.

For a discrete signal f̄ ∈ ℓ2(Z,Cn), the lifted signal is the same, therefore

they both have the same norm.

We can decompose ℓ2(Z) as the orthogonal sum of the spaces ℓ2(Z+
l ) and

ℓ2(Z−
l ) consisting of signals that are zero in Z−

l and Z+
l for a given l ∈ Z. Here

Z+
l is the set of all integers greater than or equal to l and Z−

l is the set of all integers

smaller than l. In short, ℓ2(Z) = ℓ2(Z+
l )⊕ ℓ2(Z−

l ). These spaces are important in

relation to causality discussed later in Section 2.5.



2.4. Lifted domain spaces and norms 23

The space L2(T,H) represents the Hilbert space consisting of functions p(z)

mapping from unit circle T := {z ∈ C : |z| = 1} to a separable Hilbert space H,

with norm

‖p‖2 :=
√

1

2π

∫ π

−π
‖p(ejθ )‖2

H
dθ < ∞.

If an analog lifted signal f̆ is in ℓ2(Z, L2[0, h)) then its Fourier transform F( f̆ )

belongs to L2(T, L2[0, h)) because

‖F( f̆ )‖2
2 = 1

2π

∫ π

−π
‖ f̆ (ejθ )‖2

L2[0,h)
dθ

=
∑

k∈Z

‖ f̆ [k]‖2
L2[0,h)

= ‖ f̆ ‖2
ℓ2(Z,L2[0,h))

= ‖ f ‖2
2 < ∞

The above can be proved by using the fact that

1

2π

∫ π

−π
ejθ(m−k)dθ = δ̄[m − k]. (2.25)

The equivalence of ‖F( f̆ )‖2 = ‖ f̆ ‖ℓ2(Z,L2[0,h)) is known as Parseval identity

which says that ℓ2(Z, L2[0, h)) is isomorphic to L2(T, L2[0, h)).

Similar to the analog case, the Parseval identity between discrete signal f̄ ∈
ℓ2(Z,Cn) and its Fourier transform F( f̄ ) ∈ L2(T,Cn) can be stated as

‖F( f̄ )‖2 = ‖ f̄ ‖ℓ2(Z,Cn)

This means that ℓ2(Z,Cn) is isomorphic to L2(T,Cn).

Remark 2.4.3. We use the shorthand L2(T) to denote L2(T,H) if the Hilbert

space H is understood from the context.

The Hardy space H2 is the Hilbert space of analytic functions f̃ (z) : C\D →
H (H is a separable Hilbert-space) such that

‖ f̃ ‖2 :=
√

sup
r>1

(

1

2π

∫ π

−π
‖ f̃ (rejθ )‖2

H
dθ

)

< ∞

where D is the closed unit disk in the complex plane C. The space H2 can be

identified as a closed subspace of L2(T,H) [44, chapter 5]. The orthogonal com-

plement of H2 in L2(T) exists and it is denoted by (H2)⊥. This (H2)⊥ is the

Hilbert space of analytic functions f̃ (z) : D → H such that

‖ f̃ ‖2 :=
√

sup
r<1

(

1

2π

∫ π

−π
‖ f̃ (rejθ )‖2

H
dθ

)

< ∞.
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Here D is the open unit disk in the complex plane C.

Finally, zl H2 denotes a Hilbert space of analytic functions f̃ (z) : C\D →
H such that z−l f̃ (z) ∈ H2. If H is either L2[0, h) or Cn , it can shown that

ℓ2(Z+
−l ,H) is isomorphic to zl H2 via z-transform [12, §2.5]. These spaces are

important in relation to causality discussed later in Section 2.5.

2.4.2 Adjoint systems and conjugate transfer function

In this section we discuss adjoints of lifted systems. We do this for a lifted h-time

shift invariant system Ğ, lifted hold H̀ and lifted sampler Ś.

Lifting is an isometric isomorphism between L2 and ℓ2(Z, L2[0, h)), therefore

it preserves inner products [67, §7.4]. Similarly, the Fourier transform is an iso-

metric isomorphism between ℓ2(Z, L2[0, h)) and L2(T, L2[0, h)) (also between

ℓ2(Z,Cn) and L2(T,Cn)), therefore it also preserves inner products. The adjoint

and Fourier transform operations commutes as the inner product is preserved by

the Fourier transform. Similarly, the adjoint and lifting operations commutes as

the inner product is preserved by the lifting.

It is shown in [30] that the kernel of adjoint G∗ of the system G given in (2.1)

is

g∼(s, t) := (g(t, s))∗

where ∗ denote complex conjugate transpose. The lifted z-transform of the above

given kernels are related as

g∼(z; σ, τ ) := g(1/z̄; τ, σ )∗.

The system which has the kernel g∼(z; σ, τ ) is denoted by Ğ∼(z) and it is known

as the conjugate of transfer function Ğ(z). It is shown in [30] that for z = ejθ , the

conjugate Ğ∼(ejθ ) is the adjoint of Ğ(ejθ ) with respect to L2[0, h).

Again by [30], the kernel φ(t) of the adjoint S∗ of the sampler S given in (2.2)

is

φ(t) := ψ(−t)∗

and the kernel φ(z; τ ) of the conjugate Ś∼(z) of the transfer function Ś(z) given

in (2.22) is

φ(z; τ ) := ψ(1/z̄; −τ )∗.
Note that the adjoint S∗ of a sampler S is a hold [30].

Similarly, the kernel ψ(t) of the adjoint H∗ of the hold H given in (2.4) is

ψ(t) := φ(−t)∗

and the kernel ψ(z; τ ) of the conjugate H̀∼(z) of the transfer function H̀(z) given

in (2.23) is

ψ(z; τ ) := φ(1/z̄; τ )∗.
Note that the adjoint H∗ of hold H is a sampler [30].
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2.4.3 System norms

In this section, we review the definition of some standard system norms used in

sampled-data system theory for shift invariant discrete systems and linear h-time

shift invariant systems including samplers and holds. Norms defined in this section

are very standard and discussed in great detail in [30, 3, 2, 12]. In this section S̃

means either L2[0, h) or Cn norm. Also, R̃ denotes the space (with induced 2-

norm) of all bounded operators and R̃H S denotes the space of all Hilbert-Schmidt

operators, mapping S̃i to S̃o. Here S̃i and S̃o can be L2[0, h) or Cn . Also, in this

section G can be a linear shift invariant discrete systems or a linear h-time shift

invariant systems including samplers and holds.

L∞ system norm

The space L∞ can be defined as the space of linear shift invariant discrete systems

and linear h-time shift invariant systems with norm defined as [2, 30]:

‖G‖L∞ := ess sup
θ∈[−π,π ]

‖G̃(ejθ )‖ < ∞ (2.26)

where G̃(ejθ ) is the (lifted) transfer function of G and ‖G̃(ejθ )‖ is given by

‖G̃(ejθ )‖ = sup
‖x‖2=1

‖G̃(ejθ )x‖2, x ∈ S̃.

The above definition of the L∞ norm is equivalent to the induced norm interpreta-

tion given as

‖G‖L∞ := sup
‖x‖Si =1

‖Gx‖So

where Si and So can be L2(R) or ℓ2(Z) depending upon whether the signal in

concern is analog or discrete respectively [30, §V.C]. For example, an analog

system in L∞ is a bounded operator from L2(R) to L2(R), a sampler in L∞ is a

bounded operator from L2(R) to ℓ2(Z), a hold in L∞ is a bounded operator from

ℓ2(Z) to L2(R), and a discrete system in L∞ is bounded operator from ℓ2(Z) to

ℓ2(Z). An interesting fact is that the ideal sampler does not belong to L∞ [30].

The following result is important for later chapters.

Lemma 2.4.4 (Essentially from [31]). If G ∈ L∞, then its transfer function G̃(ejθ )

is a bounded operator at almost all θ ∈ [−π, π ].

Proof. By (2.26), ‖G‖L∞ is finite iff ‖G̃(ejθ )‖ is finite at almost all θ .

zl H∞ system norm

The Hardy space H∞ is the set of analytic transfer functions G̃(z) : C\D → R̃

with finite norm given by

‖G̃‖H∞ := ess sup
z∈C\D

‖G̃(z)‖
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where D is the closed unit disk in the complex plane C and ‖G̃(z)‖ is given by

‖G̃(z)‖ = sup
‖x‖2=1

‖G̃(z)x‖2 x ∈ S̃

Similar to the H2 signal norm case, the space H∞ can be considered as a closed

subspace of L∞.

For a given l, zl H∞ is the subspace of L∞ that contains all transfer functions

G̃(z) such that z−l G̃(z) ∈ H∞ [30].

L2 system norm

The space L2 can be defined as the space of linear shift invariant discrete system

and linear h-time shift invariant systems with norm defined as [2, 30]:

‖G‖L2 :=
√

1

2πh

∫ π

−π
‖G̃(ejθ )‖2

H S dθ (2.27)

=
√

1

h

∑

k∈Z

‖G̃[k]‖2
H S < ∞ (2.28)

where G̃(ejθ ) is the (lifted) transfer function of G, G̃[k] is the lifted impulse re-

sponse of G, and ‖.‖H S stand for Hilbert-Schmidt norm of an linear operator [69,

§8.1].

The following result is important for later chapters.

Lemma 2.4.5 (Essentially from [31]). If G ∈ L2, then its transfer function G̃(ejθ )

is a Hilbert-Schmidt operator at almost all θ ∈ [−π, π ]

Proof. By (2.27), ‖G‖L2 is finite iff ‖G̃(ejθ )‖H S is finite at almost all θ .

Neither L2 nor L∞ is a subset of the other. However, in the case of transfer

functions that have uniformly bounded rank on the unit circle, we can state the

following Lemma [30].

Lemma 2.4.6. If G is in L∞ and rank G̃(ejθ ) ≤ r for almost all θ ∈ [−π, π ], then

G ∈ L2. Here r is a non-negative integer.

Proof. See [30, proposition 5.3]

Lemma 2.4.6 says that if rank G̃(ejθ ) is uniformly bounded for almost all θ ∈
[−π, π ], then G̃ ∈ L∞ implies G̃ ∈ L2. The lifted output (or the lifted input)

of a sampler (or a hold) given by (2.22) ( or (2.23)) belongs to Cn ȳ ( or Cnū ).

Therefore, if samplers or holds are in L∞ then they are in L2 by Lemma 2.4.6.

Moreover, if the sampling function of a sampler and the hold function of a hold

are in L2 then the following result holds.
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Lemma 2.4.7. Consider a sampler and a hold given by (2.2) and (2.4) respec-

tively. If the sampling function ψ of the sampler and the hold function φ of the

hold belong to L2, then the sampler and hold belong to L∞ ∩ L2.

Proof. See Appendix 2.A (page 36).

For a generalization of Lemma 2.4.7, see [30, §VI(A)] and the references

therein.

zl H2 system norm

The Hardy space H2 is the set of analytic transfer functions G̃(z) : C\D → R̃H S

with finite norm given by

‖G‖L2 :=
√

1

2πh

∫ π

−π
‖G̃(ejθ )‖2

H S dθ =
√

1

h

∑

k∈N

‖G̃[k]‖2
H S

Note that the summation in the above is over non-negative integers only.

Similar to the H2 signal norm case, the space H2 can be considered as a closed

subspace of L2 (see also [57, Theorem 12.2.1]).

For a given l, zlH2 is the subspace of L2 that contains all transfer functions

G̃(z) such that z−l G̃(z) ∈ H2.

Remark 2.4.8. The standard H2 norm of a discrete system given in [71] does not

contain the factor

√

1
h

. However, this scaling is constant, therefore it does not

affect the optimization results in this thesis.

2.5 Causality

Causality loosely speaking says that the effect of an event must happen after the

event has occurred. This section describes the meaning of causality for different

systems in the sampled-data setup. Causality for h-time shift invariant system is

not trivial as we will see in this section.

An analog system G which maps an analog signal to an analog signal, is defined

(classic) causal if

5TG(I −5T ) = 0, ∀T ∈ R, (2.29)

where the truncation operator 5T is defined as

(5T u)(t) :=
{

u(t) t < T

0 t ≥ T
.

If the analog system is continuous time invariant then it is sufficient to check the

above condition at only one time instant (say T = 0) to establish (classic) causality.
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A standard result is that a linear analog system G is (classic) causal iff it is given

by

y = Gu : y(t) =
∫ ∞

−∞
g(t, s)w(s)ds (2.30)

where g(t, s) = 0∀s > t .

Moreover, if the analog system is linear, (classic) causal and h-time shift in-

variant then we have the following standard result.

Lemma 2.5.1. Let G be a linear h-time shift invariant system given by (2.1). Then

G is (classic) causal iff its impulse response system Ğ[k] defined in (2.9) has the

following form

xo = Ğ[k]xi : xo(τ ) =











0 k < 0
∫ τ

0 g(τ, σ )xi (σ ) dσ k = 0
∫ h

0 g(kh + τ, σ )xi (σ ) dσ k > 0

where τ, σ ∈ [0, h).

Proof. See Appendix 2.A (page 36).

Remark 2.5.2. Note that in Lemma 2.5.1, Ğ[0] has kernel g(τ, σ )1[0,∞)(τ − σ)

for all τ, σ ∈ [0, h). This implies not only the index k (i.e. Ğ[k] = 0 for k < 0) but

also the structure of Ğ[0] in the impulse response system Ğ[k] plays an important

role in identifying the (classic) causality of a linear, (classic) causal and h-time

shift invariant system G.

We call an analog signal y causal if y(t) = 0, ∀t < 0. Now, it follows from

the above definition that an LCTI system G is (classic) causal if the system output

is casual for all causal inputs i.e. if its impulse response g(t) = 0∀t < 0.

Similarly a discrete system Ḡ which maps a discrete signal to a discrete signal,

is defined (classic) causal if

5̄k Ḡ(I − 5̄k) = 0 ∀k ∈ Z, (2.31)

where the truncation operator 5̄k is defined as

(5̄k ū)[n] :=
{

ū[n] n < k

0 n ≥ k
.

If the discrete system is shift invariant then it is sufficient to check the above con-

dition at only one instant (say k = 0) to establish (classic) causality. We call a

discrete signal ȳ causal if ȳ[n] = 0∀n < 0. Similarly, for a given integer l, we

call a discrete signal ȳ l-causal if ȳ[n + l] is causal. Therefore, it follows from

the above definition that the linear shift invariant discrete system given in (2.7) is

causal if the system output is casual for all causal inputs i.e. if its impulse response

w̄(k) = 0 for all integers k < 0.
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nh nh + h

y1

y2

Figure 2.6: Two analog input signals y1 and y2 used in Example

2.5.4 which are same up to time nh but different afterwards.

Similarly, we can define (classic) causality of samplers and holds. A linear

h-time shift invariant sampler S is defined (classic) causal if

5̄kS(I −5kh) = 0 ∀k ∈ Z, (2.32)

where as a linear h-time shift invariant hold H is defined (classic) causal if

5khH(I − 5̄k) = 0 ∀k ∈ Z. (2.33)

The following lemma explains how the (classic) causality of a linear h-time

shift invariant sampler is related to its sampling function.

Lemma 2.5.3. Let a linear h-time shift invariant sampler S be given by (2.2).

Then S is (classic) causal iff its sampling function ψ(t) = 0∀t ≤ −h.

Although the above lemma is standard (see [30, §VI.2]), the proof is given in

Appendix 2.A (page 37) for reference purpose.

Lemma 2.5.3 says that a (classic) causal linear h-time shift invariant sampler

S equivalently is given by

ȳ[n] =
∫ nh+h

−∞
ψ(nh − t)y(t)dt. (2.34)

Therefore, the output ȳ[n] of the sampler depends upon the input within time inter-

val (−∞, nh+h). To understand this better, let us consider the following example.

Example 2.5.4. Assume that S is a (classic) causal sampler. Also assume that y1

and y2 are two analog signals which are the same upto time t = nh but different

afterwards (Figure 2.6). Also denote ȳ1 = S y1 and ȳ2 = S y2. Since y1(t) 6=
y2(t)∀t ∈ (nh, nh + h], using (2.34) we have typically that y1[n] 6= y2[n]. Thus

the present output of the sampler depends upon the future inputs.

Now, consider a (classic) causal system G. Denote u1 = Gy1 and u2 = Gy2.

Even though, y1(t) 6= y2(t)∀t ∈ (nh, nh + h], we have that u1(nh) = u2(nh).

Thus the present output of the system does not depends upon the future inputs.

Example 2.5.4 shows that the (classic) causal sampler output depends not only

on the present and the past inputs but also on the future inputs in time interval
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[nh, (n + 1)h). If the present output of a system depends upon the present and

past inputs only then that system is called input/output causal. However this defi-

nition of input/output causality is not equivalent to the classic causality of sampler

because the present output at n depends upon the future inputs in time interval

[nh, (n + 1)h). If we need that the output ȳ[n] of the sampler depend upon the

present and the past inputs only, then we need strict (classic) causality of the

sampler which by definition means

5̄k−1S(I −5kh) = 0 k ∈ Z.

The advantage of having (2.32) as the definition of sampler’s causality is that it is

aligned with the (classic) causality definition of the hold, the LCTI systems and

the discrete systems. The difference between classic causality and input/output

causality is explained the following example.

Example 2.5.5. The non-equivalence of input/output causality with the classic

causality can be shown with an example of ideal zero order hold Hiz given in (2.6)

with hold function 1[0,h)(t). Here the step function 1[0,h)(t) is 1 if t ∈ [0, h),

otherwise it is zero. This hold is classic causal as well as input/output causal.

The adjoint of Hiz is a sampler with sampling function 1[0,h)(−t) and it is anti-

causal in input/output sense. However by definition of causality in (2.32) both of

the systems are (classic) causal.

Similarly, a zero order hold Hz given in (2.5) is classic and input/output causal.

However, its adjoint which is a sampler, is classic causal but not input/output

causal.

The following lemma explains how the (classic) causality of a linear h-time

shift invariant hold is related to its hold function.

Lemma 2.5.6. Let a linear h-time shift invariant hold H be given by (2.4). Then

H is (classic) causal iff its hold function φ(t) = 0∀t ≤ 0.

Although the above lemma is standard (see [30, §VI.2]), the proof is given in

Appendix 2.A (page 37) for reference purpose.

Lemma 2.5.6 says that a (classic) causal linear h-time shift invariant hold H is

given by

u(t) =
∑

n≤⌊ t
h ⌋,n∈Z

φ(t − nh)ū[n] (2.35)

where ⌊t⌋ means the greatest integer less than or equal to t .

Equation (2.35) implies that the hold is both classic causal and input/output

causal. The criterion given in Lemma 2.5.6 for the causality of holds looks like the

criterion of LCTI systems and shift invariant discrete systems. In fact the notion

of input/output causality and the classic causality are the same for holds, LCTI

systems and shift invariant discrete systems.
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Now, we define causality of lifted systems. A shift invariant (lifted) system G̃

(can be lifted analog system Ğ or discrete system Ḡ or lifted sampler Ǵ or lifted

hold G̀) is defined (lifted) causal if

5̃k G̃(I − 5̃k) = 0, ∀k ∈ Z. (2.36)

where the truncation operator 5̃k is defined as

(5̃k ũ)[n] :=
{

ũ[n] n < k

0 n ≥ k
.

where the lifted ũ is ŭ if the signal is analog or ū if the signal is discrete.

Remark 2.5.7. Lifting the definition of (classic) causality of a discrete system,

sampler and hold given in (2.31), (2.32) and (2.33) respectively, leads to the

(lifted) causality definition given in (2.36). However, for an analog system G we

have

5̃k ŭ[n](τ ) :=
{

ŭ[n](τ ) n < k

0 n ≥ k
.

Therefore, 5̃k Ğ(I − 5̃k) = 0 in (2.36) means 5khG(I − 5kh) = 0. This is

not equivalent to the classic causality definition given in (2.29) because there it

must be true for every time instant T ∈ R not just at kh. In other words, classic

causality implies lifted causality but not otherwise for an analog system in gen-

eral. However, if G is continuous time invariant then the classic causality and the

lifted causality are equivalent. Most of the times in this thesis the signal models

G are LCTI therefore the classic causality and the lifted causality are equivalent.

However, in general, care must be taken in the study of causality [30, remark 6.1].

The (lifted) causality leads the following simple condition on the lifted impulse

response system.

Lemma 2.5.8. Given a lifted system G̃ (can be lifted analog system Ğ or discrete

system Ḡ or lifted sampler Ǵ or lifted hold G̀). Now, G̃ is (lifted) causal iff its lifted

impulse response system G̃[k] = 0∀k < 0.

Proof. We have

ỹ[k] =
∑

i∈Z

G̃[k − i]w̃[i], k ∈ Z

For (lifted) causality we must have zero output for input w̆[i] = 0∀i < 0 i.e.

y̆[k] =
∞
∑

i=0

G̃[k − i]w̆[i] = 0, ∀k < 0

This implies Ğ[k] = 0∀k < 0.
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As a special case if G is an analog (lifted) causal system then the impulse

response system Ğ[k] defined in (2.9) has the following form

xo = Ğ[k]xi : xo(τ ) =











0 k < 0
∫ h

0 g(τ, σ )xi(σ ) dσ k = 0
∫ h

0 g(kh + τ, σ )xi (σ ) dσ k > 0

where τ, σ ∈ [0, h). Here Ğ[0] does not has the structure needed in Lemma 2.5.1

for classic causality. This again leads to the fact that the lifted causality is not same

as the classic causality for analog systems in general.

Now, we show that if G is LCTI then Ğ[0] have the structure required in Lemma

2.5.1 for classic causality.

Lemma 2.5.9. Let G be a linear analog system. If G is LCTI and lifted causal then

the impulse response system Ğ[k] defined in (2.9) has the following form

xo = Ğ[k]xi : xo(τ ) =











0 k < 0
∫ τ

0 g(τ, σ )xi (σ ) dσ k = 0
∫ h

0 g(kh + τ, σ )xi (σ ) dσ k > 0

where τ, σ ∈ [0, h).

Proof. It follows from Lemma 2.5.8 that g(kh + τ − σ) = 0∀k < 0. This means

g(t) = 0 for t < 0. This further implies

g(τ − σ) = 0, if σ > τ

Lemma 2.5.9 shows the lifted causality is the same as classic causality for

LCTI analog systems.

In summary, we have seen that the lifted, classic and input/output are not al-

ways equivalent (see Example 2.5.5 and Remark 2.5.7).

Remark 2.5.10. In this thesis, we consider the lifted causality of the systems most

of the time. Therefore, from now on, whenever we refer to causality we mean

(lifted) causality in this thesis.

Similar to the discrete signals, we call a lifted signal ỹ causal if ỹ[n] = 0, ∀n <

0. Similarly, for a given integer l, we call a lifted signal ỹ l-causal if ỹ[n + l] is

causal.

For a given integer l, a shift invariant lifted system G̃ is defined l-causal or

relaxed causal if

5̃k−l G̃(I − 5̃k) = 0, k ∈ Z

This means that for a causal lifted input, the lifted output of an l-causal system

is l-causal. In other words, the present lifted output at k depends upon all lifted
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inputs up to k + l. Here, a causal system means l = 0 and a strictly causal system

means l = −1.

Anti-causality is just opposite of the causality. A system is defined anti-causal

if its adjoint (see Section 2.4.2) is causal. Note that the relaxed causal systems

with l > 0 are neither causal nor anti-causal.

2.6 Stability

Stability of a system loosely speaking means that the output of the system is

bounded for a bounded input. At any point of time, we never want that due to

some bounded noise or external disturbances the output of our system grow un-

boundedly. Therefore, stability is desired for each component of the sampled-data

setup given in Figure 2.3. In sampled-data system theory stability is defined as

follows [30].

Definition 2.6.1. A linear h-time shift invariant system G is defined stable if its

lifted system G̃ is a bounded operator from ℓ2(Z) to ℓ2(Z).

It is clear from Definition 2.6.1 that an analog system G is stable if it a bounded

operator from L2(R) to L2(R), a discrete system W̄ is stable if it is a bounded

operator from ℓ2(Z) to ℓ2(Z), a sampler S is stable if it is a bounded operator

from L2(R) to ℓ2(Z), and a hold H is stable if it is a bounded operator from ℓ2(Z)

to L2(R).

Proposition 2.6.2. A linear h-time shift invariant system G is stable iff its induced

L∞ norm is finite i.e. ‖G‖L∞ < ∞.

Proof. See [30, theorem 6.1].

Note that an ideal sampler does not belong to L∞ therefore it is not stable [30].

Example 2.6.3. Let an LCTI analog system G : L2(R) → L2(R) be given by

G(s) = C(s I − A)−1 B + D in the Laplace domain, where A, B, C, D are

constant matrices. Then G ∈ L∞ (hence stable) if A does not have eigenvalues on

the imaginary axis [11, §2.2]. In this case, the impulse response g(t) of the system

G has a causal part determined by the poles of the system in left half plane and anti-

causal part determined by the poles of the system in right half plane. For example,

let A =
[

Ac 0

0 Aa

]

, B =
[

Bc

Ba

]

, and C =
[

Cc Ca

]

where Ac has eigenvalues

strictly in the left half plane and Aa has eigenvalues strictly in the right half plane.

Then the impulse response of the system is given by g(t) = gc(t)+ ga(t) where

gc(t) = CceAct Bc1[0,∞)(t)+ Dδ(t)

ga(t) = CaeAa t Ba1(−∞,0)(t).

Here gc(t) is the causal part and ga(t) is the anti-causal part of the impulse re-

sponse g(t). For more details see [64, §3.4.2]. Since
∫∞
−∞ |g(t)|dt is defined, the

system is stable [15, theorem 0.11].
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Let a linear shift-invariant discrete system Ḡ : ℓ2(Z) → ℓ2(Z) be given by

Ḡ(z) = C(z I − A)−1 B + D in the z-domain where A, B, C, D are constant

matrices. Similar to the analog system case, it can proved that Ḡ ∈ L∞ (hence

stable) if A does not have eigenvalues on the unit circle. Here, the impulse re-

sponse has a causal part determined by the poles (strictly) in the unit circle and a

strictly anti-causal part determined by the poles (strictly) outside the unit circle.

2.6.1 Stability with causality

It is shown in [30] that if a (lifted) system G̃ (analog, discrete, sampler or hold) is l-

causal and stable then G̃ belongs to zl H∞. The proof of the following proposition

can be found in [30].

Proposition 2.6.4. A bounded linear h-time shift invariant system G̃ : H2 →
zl H2 has induced norm ‖G̃‖L∞ and G̃ ∈ zl H∞.

Example 2.6.5. Let an LCTI analog system G : L2(R) → L2(R) be given by

G(s) = C(s I − A)−1 B + D in the Laplace domain, where A, B, C, D are

constant matrices. Then G ∈ H∞ if A is Hurwitz (i.e. all eigenvalues of A have

strictly negative real part) [16, §2.3].

Let a linear shift-invariant discrete system Ḡ : ℓ2 → ℓ2 be given by Ḡ(z) =
C(z I − A)−1 B + D in the z-domain, where A, B, C, D are constant matrices.

Similar to the analog system case, it can proved that Ḡ ∈ H∞ if A is Schur (i.e. all

eigenvalues of A are strictly in the unit circle) [14, §4.3].

2.7 Concluding remarks

In this chapter we reviewed some fundamentals of the sampled-data system. We

also reviewed the concept of lifting, lifting transforms, lifted transfer functions,

lifted signal and system norms.

2.A Proofs

Proof of (2.2). A linear sampler is given by

ȳ[k] :=
∫ ∞

−∞
ψ1(kh, s)y(s) ds

where ψ1 is the kernel of the sampler. Since the sampler is h-time shift invariant

we have that ψ1(kh, s) = ψ1(kh + mh, s + mh) for any integer m. In particular

for m = −k, we have

ȳ[k] :=
∫ ∞

−∞
ψ1(0, s − kh)y(s) ds.

Defining ψ(kh − s) := ψ1(0, s − kh), we have the desired form.
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Proof of (2.4). The proof is essentially from [27]. Let φ be the output of a hold H

with input δ̄ i.e.

φ := Hδ̄

Then by h-shift invariance of the hold, if the input is delayed by an integer k i.e.

δ̄[·−k], then the output is φ(·−kh). Since ū[n] = ∑

k∈Z δ̄[n−k]ū[k], by linearity

we have

Hū := H
∑

k∈Z

δ̄[· − k]ū[k] =
∑

k∈Z

φ(t − kh)ū[k]

Proof of Corollary 2.2.3. Using (2.4) and (2.7), we have

u = HW̄ ȳ : u(t) =
∑

n∈Z

φ(t − nh)

(

∑

k∈Z

w̄[n − k]ȳ[k]

)

=
∑

k∈Z

(

∑

n∈Z

φ(t − nh)w̄[n − k]

)

ȳ[k]

=
∑

k∈Z

(

∑

i∈Z

φ(t − (i + k)h)w̄[i]

)

ȳ[k]

Therefore, HW̄ has hold function
∑

i∈Z φ(t − ih)w̄[i].

Similarly, using (2.2) and (2.7), we have

ū = W̄S y : ū[n] =
∑

k∈Z

w̄[n − k]

∫ ∞

−∞
ψ(kh − s)y(s) ds

=
∫ ∞

−∞

(

∑

k∈Z

w̄[n − k]ψ(kh − s)

)

y(s) ds

=
∫ ∞

−∞

(

∑

i∈Z

w̄[i]ψ(nh − ih − s)

)

y(s) ds

Therefore, W̄S has sampling function
∑

i∈Z w̄[i]ψ(t − ih).

Proof of Corollary 2.3.9. Given that f̆ (ejθ ; τ ) of the lifted signal f̆ exists. If f is

real, then f̆ is real. In that case,

f̆ (e−jθ , τ ) =
∑

k

f (kh + τ )ejθk =
∑

k

f (kh + τ )e−jθk = f̆ (ejθ , τ ).
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On the other hand if f̆ (ejθ ; τ ) = f̆ (e−jθ , τ ) is true then,

f̆ (ejθ ; τ ) = f̆ (e−jθ , τ )

⇒
∫ π

−π
f̆ (ejθ ; τ )ejθk dθ =

∫ π

−π
f̆ (e−jθ ; τ )ejθk dθ

⇒
∫ π

−π
f̆ (ejθ ; τ )ejθk dθ =

∫ π

−π
f̆ (e−jθ , τ )e−jθk dθ

⇒
∫ π

−π
f̆ (ejθ ; τ )ejθk dθ =

∫ π

−π
f̆ (ejθ , τ )ejθk dθ, changed θ = −θ

⇒ 1

2π

∫ π

−π
f̆ (ejθ ; τ )ejθk dθ = 1

2π

∫ π

−π
f̆ (ejθ , τ )ejθk dθ

⇒ f̆ [k](τ ) = f̆ [k](τ )

Therefore f̆ is real, which implies f (t) is real.

Proof of Lemma 2.4.7. Using [30, Proposition 5.1], we have

Ś(ejθ )Ś∼(ejθ ) = 1

h

∑

k∈Z

ψ(jωk)ψ
∼(jωk)

Since ψ(t) ∈ L2, therefore ψ(jω) ∈ L2(jR). Let for a given θ ∈ [−π, π ],

ψθ [k] = ψ(jωk). Since ψ(jω) ∈ L2(jR), we have ψθ ∈ ℓ2. Therefore,

∑

k∈Z

ψ(jωk)ψ
∼(jωk) = ‖ψθ‖2

2

converges for almost all θ . Hence, the singular values of Ś(ejθ )Ś∼(ejθ ) are finite

for almost all θ . Therefore ‖S‖L∞ = ess supθ∈[−π,π ] ‖Ś(ejθ )‖∞ is finite. The

same is true for hold by duality.

Note that the transfer function of samplers and holds have uniformly bounded

rank at almost all θ ∈ [−π, π ]. Therefore, if samplers and holds are in L∞ then

they are in L2 by Lemma 2.4.6.

Proof of Lemma 2.5.1. Since G is linear, we have

y(t) =
∫ ∞

−∞
g(t, s)w(s)ds

Now G is (classic) causal iff g(t, s) = 0∀s > t . This implies

y(t) =
∫ t

−∞
g(t, s)w(s)ds

Lifting y(t), we have

y(kh + τ ) =
∫ kh+τ

−∞
g(kh + τ, s)w(s)ds
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where τ = [0, h). The above is equivalent to

y(kh + τ ) =
∫ kh+τ

kh

g(kh + τ, s)w(s)ds +
k−1
∑

i=−∞

∫ (i+1)h

ih

g(kh + τ, s)w(s)ds

Using h-time shift invariance and change of variables (s = ih + σ ), we have

y̆[k](τ ) =
∫ τ

0

g(τ, σ )w̆[k](σ )dσ

+
k−1
∑

i=−∞

∫ h

0

g((k − i)h + τ, σ )w̆[i](σ )dσ

Proof of Lemma 2.5.3. Since the sampler is (classic) causal, we have that

ȳ[n] =
∫ ∞

−∞
ψ(nh − t)y(t)dt = 0 ∀n < 0

for all causal input signals y. This implies that (mind the interval of integration)

ȳ[n] =
∫ ∞

0

ψ(nh − t)y(t)dt = 0 ∀n < 0 (2.37)

This implies that ψ(nh − t) = 0∀n < 0, t ≥ 0 which means ψ(t −h) = 0, ∀t ≤ 0.

This further implies that (classic) causal sampler is given by

ȳ[n] =
∫ ∞

−h

ψ(t)y(nh − t)dt

=
∫ nh+h

−∞
ψ(nh − t)y(t)dt

Proof of Lemma 2.5.6. Since the hold is (classic) causal, we have that

u(t) =
∑

n∈Z

φ(t − nh)ū[n] = 0 ∀t < 0

for all causal input signals ū. This implies that

u(t) =
∑

n∈N

φ(t − nh)ū[n] = 0 ∀t < 0

This implies that φ(t − nh) = 0∀t < 0, n ≥ 0 which means φ(t) = 0 ∀t ≤ 0.

Therefore, a (classic) causal hold is given by

u(t) =
∑

n≤⌊ t
h ⌋,n∈Z

φ(t − nh)ū[n].
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Frequency truncated norms

3.1 Introduction

we

ȳ y

y

u
H S

G
-

Figure 3.1: Sampled signal reconstruction setup

A fairly general sampled-data setup is shown in Figure 3.1. Here an analog

signal y is sampled by a sampler S (with sampling period h) to produce a discrete

signal ȳ. Then the hold H converts the discrete signal ȳ back to the analog domain.

This reconstructed signal u must resemble our original analog signal y. To check

the quality of the reconstruction process, u is compared with y. To measure the

quality of reconstruction process, it is common in sampled-data system theory to

use the L2 or L∞ norm [3, 2, 30] of the mapping from w to e = y − u. This

mapping is given by

Ge := (I − HS)G.

The joint design of an L2 or L∞ optimal sampler-and-hold given a real linear con-

tinuous time invariant system (LCTI) G is well known (see [31] and the references

there in). As an example, consider an LCTI system G ∈ L∞ ∩ L2 with frequency

response G(jω) that is baseband dominant i.e

|G(jω)| ≥ |G(j(ω + 2nωN))| ∀n ∈ Z, ω ∈ [0, ωN] (3.1)

where ωN := π
h

is the Nyquist frequency corresponding to sampling period h (see

Figure 3.2(a)). Now, it follows from [31, example 6.1] that both the L2 and L∞
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0 ωn ω →
(a) Frequency magnitude response of a base-

band dominant G

1

0 ωn ω →
(b) Frequency magnitude response of

HoptSopt

0 ωn ω →
(c) Frequency magnitude response of (I −
HoptSopt)G

0 ωn ω →
(d) Frequency magnitude response of

HoptSoptG

Figure 3.2: Frequency magnitude responses at various points in

sample-data reconstruction setup if the frequency response is base-

band dominant and the sampler and hold are L2 or L∞ optimal.

optimal sampler is a cascade of the ideal low-pass filter which passes the frequency

band [0, ωN], followed by the ideal sampler i.e.

ȳ = Sopt y : ȳ[k] = 1

h

∫ ∞

−∞
sinch(kh − τ )y(τ ) dτ

and the optimal hold is the sinc interpolator

u = Hopt ȳ : u(t) =
∑

k∈Z

ȳ[k] sinch(t − kh).

Here sinch(t) = sin(ωNt)/(ωNt). Therefore, by the Shannon sampling theorem,

the cascade HoptSopt is the ideal low pass filter with cut-off frequency ωN and

it is LCTI (see Figure 3.2(b)). This cascade HoptSopt results in an LCTI Ge =
(I − HoptSopt)G whose frequency response is the same as that of G but without

the band passed by HoptSopt (see Figure 3.2(c)). Since Ge is LCTI, its squared L2

norm can be calculated as:

‖Ge‖2

L2 = 1

π

∫ ∞

ωN

‖G(jω)‖2 dω = 1

π
tr

∫ ∞

ωN

G∼(jω)G(jω) dω

where G(jω) is the frequency response of the LCTI system G. Similarly, since

HoptSoptG is an LCTI system with frequency response shown in Figure 3.2(d), its

squared L2 system norm can be obtained as

‖HoptSoptG‖2

L2 = 1

π

∫ ωN

0

‖G(jω)‖2 dω = 1

π
tr

∫ ωN

0

G∼(jω)G(jω) dω.
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Therefore, the calculation of a truncated finite and a semi-infinite integral is re-

quired for obtaining the system norms ‖Ge‖L2 and ‖HoptSoptG‖2

L2 (if finite). Gen-

eralizing the situation, the basic integrals that need to be calculated can be written

as

‖G‖2
ωl

:= 1

π
tr

∫ ∞

ωl

G∼(jω)G(jω) dω (3.2)

and

‖G‖2
[ωl,ωu] := 1

π
tr

∫ ωu

ωl

G∼(jω)G(jω) dω (3.3)

where G is LCTI and ωu > ωl ≥ 0. For a givenωl and ωu, ‖G‖ωl
and ‖G‖[ωl,ωu] are

known as frequency truncated norms. In the same way, if G(jω) is not baseband-

dominant then the optimal HS cancels the frequency band(s) in which the fre-

quency response gain of G is dominant [31]. In this case, the optimal sampler

comprises of the ideal sampler and an ideal passband filter whose frequency pattern

might be rather complicated. But in any case the optimal HS cancels some finite

frequency bands from |G(jω)|. Again to calculate the ‖Ge‖L2 (or ‖HoptSoptG‖L2)

in this case, the fundamental requirement is to calculate integrals of type (3.2) and

(3.3). Another interesting case arises when G(jω) has an imaginary axis pole jω

for some w ≥ 0. In this case, HS cancels a frequency band of |G(jω)| that con-

tains this imaginary axis pole in order to have a finite ‖Ge‖L2 (see [31] for details).

Again the fundamental fact is that the calculation of the ‖Ge‖L2 (if finite) in this

situation requires the calculation of integrals of type (3.2) and (3.3).

In summary, the calculation of integrals (3.2) and (3.3) are required in the

sampled-data system theory. These integrals are also studied in the context of

model reduction by [17] for a proper rational G(s)with real coefficients. However,

there are some subtleties, in particular related to finiteness of the semi-infinite

integral (3.2) and to the problem posed by imaginary poles of G(s). Similar to

[17], only proper rational systems are considered in this chapter. An advantage

of using rational G(s) is that it provides a good approximation of a wide range

of LCTI transfer functions and that it is computationally efficient due to its finite

dimension. An advantage of a proper rational G(s) with real coefficients is that it

can be realized in state space as G(s) := D + C(s I − A)−1 B where A, B,C and

D are real matrices. This realization will be used throughout this chapter. Clearly

the semi-infinite integral (3.2) is infinite if D 6= 0. Therefore, D is assumed zero

whenever the semi-infinite integral is discussed. For the finite integral there is no

such condition. All the subtleties related to imaginary axis poles of a given proper

rational system G(s), along with expressions for the integrals (3.2) and (3.3) are

the main content of this chapter. This chapter is based on the papers [33, 34].
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3.2 A generic version

If a proper rational system G(s) is realized as D + C(s I − A)−1 B then

G∼(s)G(s) = D̂ + Ĉ(s I − A)−1 B̂

where (see [70, §3.4])

[

Â B̂

Ĉ D̂

]

:=





A 0 B

−CT C −AT −CT D

DT C BT DT D



 . (3.4)

Now, we have

tr

∫

G∼(jω)G(jω) dω = tr D̂ω + tr

∫

Ĉ(jωI − A)−1 B̂ dω. (3.5)

To evaluate the integral in the right hand side of the above equation, we consider a

generic problem of integrating a transfer function K (s) := C̃(s I − Ã)−1 B̃ over a

part of imaginary axis i.e.
∫ ∞

ωl

K (jω)dω =
∫ ∞

ωl

C̃(jωI − Ã)−1 B̃ dω (3.6)

where Ã, B̃, C̃ are possibly complex matrices and ωl ≥ 0.

To understand the subtleties in the integration of K (jω), let us consider an

example.

Example 3.2.1. Consider K (s) = 1/(s2 + 1). It has poles at ±j on the imaginary

axis. Consider the following semi-infinite integral with positive real ωl :

∫ ∞

ωl

K (jω)dω =
∫ ∞

ωl

1/(−ω2 + 1) dω

=
{

1
2

log
(

ωl−1
ωl+1

)

ωl > 1

not defined ωl < 1
.

Note that the above integral exists only for ωl > 1. Now consider the following

finite integral with real ωl and ωu such that ωu ≥ ωl:
∫ ωu

ωl

K (jω)dω =
∫ ωu

ωl

1/(−ω2 + 1) dω

=
{

1
2

log
(

(ωu+1)(ωl−1)
(ωu−1)(ωl+1)

)

1 /∈ [ωl, ωu]

not defined 1 ∈ [ωl, ωu]

Here, again integration over the imaginary axis pole 1 is not defined. But other-

wise it is defined and finite even if the limits ωu and ωl are less than 1. This result

is also visible from Figure 3.3. If both the limits ωu and ωl lie in the same shaded

region of the Figure 3.3 then
∫ ωu

ωl
K (jω) dω is defined.
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0 1

ω →

Figure 3.3: K (jω) with respect to frequency ω. The shaded region

shows the integrable portion of K (jω).

Example 3.2.1 shows the role of imaginary axis poles of K (s) in the existence

of truncated integrals. Another important factor to note in the example is that log

is a multi-valued function over C. To make it single-valued and analytic we take

from now on, the principal logarithm. If a complex number z ∈ C does not lie on

the non-positive real axis R̄−, then its principal logarithm log(z) is defined as [48]

log(z) := log(|z|)+ j Arg(z) (3.7)

where Arg(z) ∈ (−π, π ] is the principle argument function [48, chapter 3]. Sim-

ilar to Example 3.2.1, it can be expected that integrating the transfer matrix K (s)

results in a logarithm of some matrix. A short overview of matrix functions and

the logarithm in particular is given in Section 3.2.1. After equipped with matrix

logarithm, an anti-derivative of K (jω) can be obtained, hence the integral (3.6).

This is discussed in Section 3.2.2.

3.2.1 Matrix functions and principal logarithm

The purpose of this section is to provide a quick overview of the theory of matrix

functions and principal logarithm as described in Chapter 1 of [19] along with

some theorem useful in evaluating integral (3.6).

The following is a standard result in Linear Algebra.

Lemma 3.2.2 (Jordan canonical form). Every matrix A ∈ Cn×n can be written in

a Jordan canonical form

A = Z diag(J1, J2, · · · , Jp)Z
−1, (3.8)
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where the Jordan block Jk is a matrix of the form

Jk =













λk 1

λk

. . .

. . . 1

λk













∈ Cmk×mk ,

Z is an invertible matrix, and λ1, λ2, · · · , λp are the eigenvalues of A.

Proof. See [54, chapter 5].

Remark 3.2.3. An eigenvalue of A can be associated with more than one Jordan

block. Therefore in general the number of distinct eigenvalues can be less than or

equal to p. In this section, we denote all distinct eigenvalues of A by λ1, · · · , λs

and the order of the largest Jordan block associated with λi with ni .

The following terminology is needed in the definition of Matrix functions.

Definition 3.2.4. A function f : C → C is said to be defined on the spectrum of

the matrix A if

f (k)(λi ), k = 0, . . . , ni − 1, i = 1, . . . , s

exist. Here f (k) denotes the k-th derivative of f , and λi and ni are as in Lemma

3.2.2 and Remark 3.2.3.

Now, the matrix function can be defined as follows:

Definition 3.2.5. Let (3.8) be a Jordan canonical form of the matrix A ∈ Cn×n . If

a function f : C → C is defined on the spectrum of A, then

f (A) := Z diag( f (J1), f (J2), · · · , f (Jp))Z
−1

where

f (Jk) :=















f (λk) f (1)(λk) · · · f (mk −1)(λk )
(mk−1)!

f (λk)
. . .

...
. . . f (1)(λk)

f (λk)















.

Clearly, for a complex matrix A, log(A) is defined only when the scalar func-

tion log(z), z ∈ C is analytic on the spectrum of A (see Definition 3.2.4). A

standard convention is to use the principal logarithm and this is analytic on the set

C\R̄−. This implies that, to have a proper definition of log(A) its eigenvalues must

not lie on the non-positive real axis R̄−. Similar to the scalar principal logarithm,

the principal logarithm of a matrix A is thus defined as follows,
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Definition 3.2.6 (Principal logarithm). If a complex matrix A does not have eigen-

values on the non-positive real axis R̄− then the principal logarithm of A is defined

as

log(A) := Z diag( f (J1), f (J2), · · · , f (Jp))Z
−1 (3.9)

where

log(Jk) :=

















log(λk)
1
λk

· · · (−1)mk −2

(mk−1)λ
mk −1

k

log(λk)
. . .

...
. . . 1

λk

log(λk)

















where the scalar principal logarithm is defined in (3.7).

Existence and uniqueness of the principal logarithm of a matrix A are proved

in [19, Theorem 1.28 and 1.31].

The following properties are directly visible from the definition of matrix func-

tion and are proved in [19].

Lemma 3.2.7. If a complex matrix A does not have eigenvalues on the non-

positive real axis R̄−, then its principal logarithm log(A) exists and satisfies the

following properties:

1. log(λk) is an eigenvalue of log(A) if λk is an eigenvalue of A.

2. log(diag{A1, A2, · · · , An}) = diag{log(A1), log(A2), · · · , log(An)}.
3. log(T AT −1) = T log(A)T −1.

4. log(A)∗ = log(A∗).

5. If A is real, then log(A) is real.

Proof. All the results follow from [19, Theorem 1.13] and [19, Theorem 1.18].

Matrix integral

In this section, we will use the definition of matrix function and logarithm to derive

some important results which eventually helps in evaluating the integral (3.6). We

start with the following small but useful lemma.

Lemma 3.2.8. If ωu and ωl are real numbers then the complex function

flog(z) := log

(

ωu + jz

ωl + jz

)

, z ∈ C

where log means the scalar principal logarithm (3.7), is well-defined and analytic

iff z /∈ [jωl, jωu]. Here [jωl, jωu] denotes the set of convex combinations of jωl and

jωu.
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Proof. See Appendix 3.A (page 53).

The above lemma is used to prove the following important theorem that has

application in evaluating the integration of a rational transfer function.

Theorem 3.2.9. Given a matrix A ∈ Cn×n with Jordan canonical form given by

(3.8). Define ωmax := maxωk where the maximum 1 is taken over all imaginary

eigenvalues jωk of A. Then,

1. on ω ∈ (ωmax,∞), the function log(ωI + jA) is an analytic anti-derivative

of (ωI + jA)−1.

2. if A has no imaginary eigenvalue jω with ω ∈ [ωl, ωu] where ωl and ωu are

real numbers, then

∫ ωu

ωl

(ωI + jA)−1 dω = log
(

(ωu I + jA)(ωl I + jA)−1
)

where log is the principal logarithm (see Definition 3.2.6).

Proof. See Appendix 3.A (page 53).

It is interesting to note that if ω < ωmax, then anti-derivative
∫

(ωI + jA)−1 dω

cannot be written as log(ωI + jA) simply because it has an eigenvalue on the non-

positive real axis R̄−. But a finite integral exists if limits ωl and ωu satisfy the

condition given in part (2) of Theorem 3.2.9.

Following are a few extensions of Theorem 3.2.9:

Corollary 3.2.10. Given a matrix A ∈ Cn×n , then

1. limω→∞ log(ωI + jA)− log(ω)I = 0.

2. limω→∞ imag (log(ωI + jA)) = 0.

where log is the principal logarithm (see Definition 3.2.6).

Proof. See Appendix 3.A (page 55).

The following result is also useful:

Proposition 3.2.11.

1. If A is Hurwitz then imag(log(jA)) = imag(log(−A))− π
2

I

2. If A is Hurwitz and real, then imag(log(jA)) = −π
2

I

Proof. See Appendix 3.A (page 55).

1ωmax = −∞ if A has no eigenvalues on imaginary axis.
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spectrum of Ã
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×

spectrum of ω0 I + j Ã

×
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×

×
×

spectrum of jω0 I − Ã

Figure 3.4: Given a spectrum of Ã and given an ω0 > ωmax (left),

the other two plots show the spectrum of ω0 I + j Ã and jω0 I − Ã.

3.2.2 Integration of a transfer function

We return to the problem of integration of a strictly proper rational transfer func-

tion K (s) := C̃(s I − Ã)−1 B̃. Equipped with the matrix logarithm, an anti-

derivative of K (jω) can be obtained as:

Lemma 3.2.12. Define ωmax := maxωk where the maximum is taken over all

imaginary eigenvalues jωk of Ã. An anti-derivative of K (jω) := C̃(jωI − Ã)−1 B̃

with Ã, B̃, C̃ complex matrices, on (ωmax,∞) is
∫

K (jω)dω = −jC̃ log(ωI + j Ã)B̃. (3.10)

Proof. Follows from Theorem 3.2.9(1).

Analogous to the scalar case
∫

1/(j(ω − ωN)) dω = −j log(ω − ωN) for all

ω > ωN, it seems intuitive that (3.10) is an anti-derivative of

K (jω) = −jC̃(ωI + j Ã)−1 B̃. (3.11)

However, this intuition may lead us to a wrong conclusion that the anti derivative

of K (jω) = C̃(jωI − Ã)−1 B̃ on (ωmax,∞) is

−jC̃ log(jωI − Ã)B̃ (3.12)

as we see next. It is generally wrong because as ω varies in (ωmax,∞) some

eigenvalues of jωI − Ã may cross the branch cut (the non positive real axis) of

the principal logarithm, and this makes the candidate anti-derivative (3.12) dis-

continuous (and wrong), see Figure 3.4(right). Extracting j from the realization

of K (jω) as done in (3.10) avoids this problem because now the matrix whose

logarithm we take, ωI + j Ã, by construction has no eigenvalues on the branch

cut when ω ∈ (ωmax,∞), see Figure 3.4(middle). All this is happening because

the non-positive real axis R̄− is used as a branch cut for the principal logarithm,

which is standard across literature. If the non-positive imaginary axis would have

been chosen as branch cut for logarithm, then extraction of j from the realization

of K (jω) would not have been needed at all.

Now it is a matter of putting the limits in the anti-derivative of K (jω) to eval-

uate the semi-infinite integral (3.6):
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Theorem 3.2.13. Suppose that K (s) = C̃(s I − Ã)−1 B̃ with Ã, B̃, C̃ complex

matrices. If C̃ B̃ = 0, then

∫ ∞

ωl

K (jω) dω = jC̃ log(ωl I + j Ã)B̃ (3.13)

provided that ωl > ωmax := maxωk where the maximum is taken over all imag-

inary eigenvalues jωk of Ã. If C̃ B̃ 6= 0, then the semi-infinite integral in the left

hand side of (3.13) is not defined.

Proof. Using Lemma 3.2.12, Corollary 3.2.10(1) and C̃ B̃ = 0, we obtain

∫ ∞

ωl

K (jω) dω = − j

∫ ∞

ωl

C̃(ωI + j Ã)−1 B̃ dω

=jC̃ log(ωl I + j Ã)B̃ − j lim
w→∞

log(ω)C̃ B̃

=jC̃ log(ωl I + j Ã)B̃.

Clearly if C̃ B̃ 6= 0 then we do not have finite norm.

The condition C̃ B̃ = 0 is required to control the growth of the logarithm func-

tion as frequency ω increases. The condition C̃ B̃ = 0 is equivalent to K (s) having

relative degree 2 or more. This can be seen as follows:

K (s) = s−1C̃(I − Ã/s)−1 B̃

= s−1C̃(I + Ã/s + ( Ã/s)2 + · · · )B̃, for |s| > ‖A‖
= C̃ B̃s−1 + C̃ Ã B̃s−2 + C̃ Ã2 B̃s−3 + · · · .

From this it is clear that the relative degree of K (s) is 2 iff C̃ B̃ = 0.

Sometimes, we just need the trace of the integral in (3.6). In this case, the

condition C̃ B̃ = 0 will change to condition tr C̃ B̃ = 0 as shown in the following

corollary.

Corollary 3.2.14. Suppose that K (s) = C̃(s I − Ã)−1 B̃ with Ã, B̃, C̃ complex

matrices. If tr C̃ B̃ = 0, then

∫ ∞

ωl

tr K (jω) dω = j tr C̃ log(ωl I + j Ã)B̃ (3.14)

provided that ωl > ωmax := maxωk where the maximum is taken over all imagi-

nary eigenvalues jωk of Ã. If tr C̃ B̃ 6= 0, then the semi-infinite integral in the left

hand side of (3.14) is not defined.

Proof. Similar to the proof of Theorem 3.2.13.
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3.2.3 Finite integral for proper K (s)

If a proper rational transfer function K (s) = C̃(s I − Ã)−1 B̃ has relative degree

1, then the semi-infinite integral (3.13) does not exist because limω→∞ K (jω) =
C̃ B̃ 6= 0 is nonzero. In Theorem 3.2.16, the condition C̃ B̃ = 0 is required only

to make the integral finite at ω = ∞, but if the upper limit is finite then there

is no need of this condition. Similarly, if K (s) has a state space realization D̃ +
C̃(s I − Ã)−1 B̃ with D̃ 6= 0, then also the semi-infinite integral (3.13) does not

exist, because limω→∞ K (jω) = D̃ nonzero. However, a finite integral may still

exist in the above cases:

Proposition 3.2.15. Let K (s) = C̃(s I− Ã)−1 B̃+D̃ be a realization with Ã,B̃,C̃ ,D̃

real matrices. Then
∫ ωu

ωl

K (jω) dω = −jC̃[log(ωu I + j Ã)− log(ωl I + j Ã)]B̃ + D̃(ωu − ωl)

(3.15)

provided that ωl and ωu are finite, and greater than ωmax := maxωk where the

maximum is taken over all imaginary eigenvalues jωk of Ã.

Proof. Follows from Lemma 3.2.12.

Proposition 3.2.15 requires that both the limits should be greater than ωmax.

However, in the scalar case (see Example 3.2.1 and Figure 3.3) and in Theorem

3.2.9(2), the only requirement is that the imaginary axis poles should not lie in be-

tween the limits of integration. This suggests that the finite integral in the Propo-

sition 3.2.15 can be further generalized. Indeed.

Theorem 3.2.16. Given finite ωu, ωl ∈ R. Let K (s) = C̃(s I − Ã)−1 B̃ + D̃ be

a realization with real Ã,B̃,C̃ ,D̃ matrices and suppose that Ã has no imaginary

eigenvalue jω with ω ∈ [ωl, ωu]. Then,

∫ ωu

ωl

K (jω) dω = −jC̃ log(�)B̃ + D̃(ωu − ωl).

where

�̃ := (ωu I + j Ã)(ωl I + j Ã)−1 = (jωu I − Ã)(jωl I − Ã)−1. (3.16)

Proof. Follows from Theorem 3.2.9(2).

Notice that the extraction of j from (jωI − Ã) — which was needed earlier to

avoid eigenvalues on the branch cut R̄− — cancels in the formula for �̃. In fact,

any non-zero complex number can be extracted. In any case �̃ has no eigenvalues

on the non-positive real axis R̄− if Ã has no imaginary eigenvalue jω with ω ∈
[ωl, ωu] (see Lemma 3.2.8 also).

The remaining subsections contain applications and special cases of Theorem

3.2.13, Corollary 3.2.14 and Theorem 3.2.16.
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3.3 Computation of frequency truncated L2-norm

We return to the truncated integrals (3.2) and (3.3). If G(s) := C(s I − A)−1 B,

then G∼G can be realized as (3.4) with D = 0. In this case tr Ĉ B̂ = 0, so the

semi-infinite integral (3.2) can be obtained via Corollary 3.2.14.

Proposition 3.3.1. For a real system G with given transfer matrix G(s) := C(s I −
A)−1 B, the truncated norm (3.2) satisfies

‖G‖2
ωl

= 1

π
tr
(

jĈ log(ωl I + j Â)B̂
)

(3.17)

provided that ωl > ωmax := max |ωk | where the maximum is taken over all imagi-

nary eigenvalues jωk of A, and Â, B̂, and Ĉ are as in (3.4) with D = 0.

Proof. Since Â is real, max |ωk | is same as maxωk . Also, as tr Ĉ B̂ = 0, the result

follows from Corollary 3.2.14.

If the A matrix of G(s) does not have a pole on the imaginary axis, then ωmax

can be taken as −∞. This means ωl is allowed to be anything, in particular zero.

This case arises if G(s) is stable which is equivalent to say that A does not have

eigenvalues on the imaginary axis (see Example 2.6.3). Considering only the stable

and causal G(s) case (see Example 2.6.5), it will be shown in next section that this

leads to a more computationally efficient form of (3.17). A discussion similar to

the stable and causal systems also follows for stable and anti-causal systems.

3.3.1 Stable and causal G(s)

It is a classic result that the squared L2-norm

‖G‖2
L2 := 1

π
tr

∫ ∞

0

G∼(jω)G(jω) dω (3.18)

of a stable and causal finite dimensional system G with given transfer matrix

G(s) = C(s I − A)−1 B can be computed via the solution of a linear equation.

Specifically, if A is Hurwitz then

‖G‖2
L2 = tr(BT P B) (3.19)

where P is the unique solution of the Lyapunov equation

AT P + P A = −CT C, (3.20)

see e.g. [70, Lemma 2.1]. If A is a square matrix of dimension n, then ‖G‖2
L2

obtained via (3.19) is given in terms of an n × n matrix whereas ‖G‖2
L2 obtained

via (3.17) is given in terms of an 2n×2n matrix. This suggests that there may exist

a simplification of (3.17) that requires only a n × n matrix, in case of a Hurwitz A

matrix.
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Theorem 3.3.2. Let G(s) = C(s I − A)−1 B be a realization with A, B,C real

matrices and A Hurwitz. Then

‖G‖2
ωl

= − 2
π imag tr(BT P log(ωl I + jA)B) (3.21)

= ‖G‖2
L2 − 2

π imag tr(BT P log(jωl I − A)B) (3.22)

where P is the unique solution of the Lyapunov equation (3.20).

Proof. See Appendix 3.A (page 55).

In Theorem 3.3.2, Hurwitzness of A helps in two different ways. First, a so-

lution of the Lyapunov equation (3.20) is guaranteed to exist, and second, the

eigenvalues of the matrices ωl I + jA and jωl I − A do not lie on the non-positive

real axis R̄−. This guarantees the existence of log(ωl I + jA) and log(jωl I − A)

for all ωl ∈ R.

For ωl = 0 we recover (3.19). Indeed for ωl = 0, (3.21) reduces to

‖G‖2
ωl=0 = −2

π
tr
(

BT P[imag log(jA)]B
)

= −2

π
tr

(

BT P[
−π
2

I ]B

)

= tr
(

BT P B
)

.

Here Proposition 3.2.11 is used, which states that imag(log(jA)) = −π
2

I for every

Hurwitz and real matrix A.

The following example shows an application of Theorem 3.3.2:

Example 3.3.3. Given a stable and causal system G with transfer function

G(s) = 1

(s + 1)2(s + 2)
.

The state-space realization of G(s) is C(s I − A)−1 B + D where

[

A B

C D

]

=









−4 −5 −2 1

1 0 0 0

0 1 0 0

0 0 1 0









.

Figure 3.5 (page 52) shows the truncated norm ‖G‖ωl
with respect to truncation

frequency ωl, as calculated by (3.21). As expected, the truncated norm converges

to the H2 norm of the system when ωl tends to zero and converges to 0 when ωl

tends to infinity.

The next section explains the computation of the finite integral (3.3).
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0 ωl →

‖G‖ωl

‖G‖
H2

Figure 3.5: Truncated norm for Example 3.3.3 at different trunca-

tion frequencies.

3.3.2 Finite integral for G(s)

Similar to Section 3.2.3, assume that G(s) is proper with a state space realization

G(s) := D + C(s I − A)−1 B with a non-zero D. In this case, the semi-infinite

integral (3.2) does not exist because limω→∞ G∼(jω)G(jω) = D∗D is a nonzero

quantity. Nevertheless, a finite integral may still exist.

Theorem 3.3.4. Take ωu, ωl ∈ R. Let G(s) = C(s I − A)−1 B + D be a realization

with real A, B,C, D matrices and suppose that A has no imaginary eigenvalue jω

with ω ∈ [ωl, ωu]. Then,

‖G‖2
[ωl,ωu] = 1

π

(

−j tr Ĉ log(�̂)B̂ + tr D̂(ωu − ωl)
)

(3.23)

where �̂ := (ωu I + j Â)(ωl I + j Â)−1,and Â, B̂, Ĉ and D̂ are as defined in (3.4).

Proof. Follows from Theorem 3.2.16.

Finite integral for stable and causal G(s)

Similar to Section 3.3.1, if A is Hurwitz then the following simplified form is

possible.

Theorem 3.3.5. Let G(s) = D +C(s I − A)−1 B be a realization with A, B,C, D

real matrices and A Hurwitz. Then

‖G‖2
[ωl,ωu] = 2

π
imag tr

(

(BT P + DT C) log(�)B
)

+ 1

π
tr DT D(ωu − ωl)

(3.24)

where� := (ωu I + jA)(ωl I + jA)−1 and P is the unique solution of the Lyapunov

equation (3.20).

Proof. See Appendix 3.A (page 56).
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3.4 Conclusions

This chapter gives expressions in terms of principal logarithms for frequency trun-

cated norms of stable and unstable systems. There exist computationally efficient

algorithms, not relying on the Jordan form, to compute the principal logarithm.

One such algorithm is implemented in MATLAB [10]. A computationally efficient

form for frequency truncated norm is also obtained for stable systems in this chap-

ter.

3.A Proofs

Proof of Lemma 3.2.8. Since the principal logarithm by definition is not defined

and analytic on the non-positive real axis R̄−, flog(z) is not defined and analytic

iff (ωu + jz)(ωl + jz)−1 lies on R̄−. This means that there exists a real r ≥ 0 such

that

(ωu + jz)(ωl + jz)−1 = −r.

This gives

z = j
ωu + rωl

r + 1
. (3.25)

This z is an imaginary number because r , ωl and ωu are real. Since r ≥ 0, equation

(3.25) shows that z is a convex combination of jωu and jωl. But this contradicts

the assumption that z /∈ [jωl, jωu].

Proof of Theorem 3.2.9. Let λk be the eigenvalue of Jordan block Jk ∈ Cmk×mk

(see (3.8)). For a given ω ∈ R, the function 1/(ω + jz) is analytic with respect

to z as long as z 6= jω. Therefore, using Definition 3.2.4 and (3.8), if jω is not an

eigenvalue of A, we have

(ωI + jA)−1 = Z
(

diag(F1(ω), · · · , Fp(ω))
)

Z−1

where Fk(ω) ∈ Cmk×mk is defined as

Fk(ω) :=













(ω + jλk)
−1 −j(ω + jλk)

−2 · · · (−j)mk−1(ω + jλk)
−mk

(ω + jλk)
−1 . . .

...
. . . −j(ω + jλk)

−2

(ω + jλk)
−1













.

(3.26)

Let jω1, · · · , jωq be all distinct imaginary eigenvalues of A with ω1 ≤ ω2 ≤
· · · ≤ ωq . Define ω0 := −∞ and ωq+1 := ∞, then for a given n ∈ {0, . . . , q}

∫

(ωI + jA)−1 dω = Z
(

diag(L1(ω), · · · , L p(ω))
)

Z−1, (3.27)
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is an anti-derivative of (ωI +jA)−1 at all ω ∈ (ωn, ωn+1), where Lk(ω) ∈ Cmk×mk

is defined as

Lk(ω) :=















fλk
(ω) j(ω + jλk)

−1 · · · −(−j)mk−1 (ω+jλk)
−mk+1

mk−1

fλk
(ω)

. . .
...

. . . j(ω + jλk)
−1

fλk
(ω)















(3.28)

and

fλk
(ω) :=

{

log(ω + jλk), if ω + jλk /∈ R̄−

log(−ω − jλk), if ω + jλk ∈ R− . (3.29)

Since the principal log is not defined and analytic on R̄−, fλk
(ω) is defined in this

way. Note that fλk
(ω) in the above equation is defined only for ω ∈ (ωn, ωn+1),

therefore we have either fλk
(ω) = log(ω + jλk) or fλk

(ω) = log(−ω − jλk).

Part (1): If real ω > ωmax, then by Definition 3.2.6:

log(ωI + jA) = Z
(

diag(L1(ω), · · · , L p(ω))
)

Z−1 (3.30)

because log(ω + jz) is well-defined and analytic on the spectrum of A and

dn

dzn
log(ω + jz) = −(−j)n(ω + jz)−n(n − 1)!.

part (2): If no eigenvalue of A is in [jωl, jωu] then the anti-derivative in (3.27)

is defined for all ω ∈ [ωl, ωu]. Therefore
∫ ωu

ωl

(ωI + jA)−1 dω = Z
(

diag(L1(ω), · · · , L p(ω))
∣

∣

ωu

ωl

)

Z−1,

where Lk(ω)
∣

∣

ωu

ωl
:= Lk(ωu)− Lk(ωl) is given by,











log
(

ωu+jλk

ωl+jλk

)

· · · −(−j)mk−1
(

(ωu+jλk )
−mk+1

mk−1
− (ωl+jλk )

−mk+1

mk−1

)

. . .
...

log
(

ωu+jλk

ωl+jλk

)











.

for all eigenvalues λk of A.

Note that log((ωu + jz)(ωl + jz)−1) is a well-defined and analytic function for

all z /∈ [jωl, jωu] (see Lemma 3.2.8), in particular at all eigenvalues of A as A has

no eigenvalues in [jωl, jωu]. Therefore by Definition 3.2.6

log
(

(ωu I + jA)(ωl I + jA)−1
)

= Z
(

diag(L1(ω), · · · , L p(ω))
∣

∣

ωu

ωl

)

Z−1.

as dn

dzn log(
ωu+jz
ωl+jz

) = −(−j)n
(

(ωu + jz)−n − (ωl + jz)−n
)

(n − 1)!.
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Proof of Corollary 3.2.10. For ω > ωmax, (3.30) can be used.

1. Since limω→∞ log(ω + jλk) − log(ω) = 0 and limω→∞(ω + jλk)
− j = 0

for an integer j > 0, we have that limω→∞ Lk(ω) − log(w)Imk
= 0 (see

(3.28)).

2. Since log(ω) ∈ R, we have that

lim
ω→∞

imag(Lk(ω)− log(w)Imk
) = 0 = lim

ω→∞
imag(Lk(ω))

Proof of Proposition 3.2.11. Let z ∈ C and real(z) < 0, then using the branch

C\R̄− for scalar logarithm, we have

log(jz) = log(−z)− j
π

2
.

Since A is a Hurwitz matrix, the functions log(jz) and log(−z) are defined on the

spectrum of A. Hence, log(−A) and log(jA) exist by Definition 3.2.6. Therefore,

using [19, Theorem 1.15a] (or Definition 3.2.6),

log(jA) = log(−A)− j
π

2
I

and therefore,

imag(log(jA)) = imag(log(−A)− j
π

2
I )

= imag(log(−A))− π

2
I .

If A ∈ Rn×n , then log(−A) is real by Lemma 3.2.7(5). Hence, imag(log(−A)) =
0.

Proof of Theorem 3.3.2. Using (3.17), the truncated norm ‖G‖2
ωl

is given by

‖G‖2
ωl

= 1

π
tr
(

jĈ log(ωl I + j Â)B̂
)

where Ĉ =
[

0 BT
]

and B̂ =
[

B 0
]T

as D = 0.

Define T :=
[

I 0

−P I

]

, then using (3.20) and Lemma 3.2.7(3, 4), we have

log(ωl I + j Â) = T −1 log(ωl I + jT ÂT −1)T (3.31)

= T −1 diag{log(ωl I + jA), log(ωl I − jAT )}T . (3.32)

Therefore, using above ‖G‖2
ωl

is given as

‖G‖2
ωl

= 1

π
tr
(

jĈ log(ωl I + j Â)B̂
)
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= 1

π
tr
(

jĈT −1 diag{log(ωl I + jA), log(ωl I − jAT )}T B̂
)

= 1

π
j tr
(

BT P log(ωl I + jA)B − BT log(ωl I − jAT )P B
)

= − 2

π
tr imag(BT P log(ωl I + jA)B)

where the last step follows from Lemma 3.2.7(4) which says log(A)∗ = log(A∗).
Since −(jωl I − A) is Hurwitz for every ω ∈ R, therefore using Theorem 3.2.11(1),

imag log(ωl I + jA) = imag log(−j(jωl I − A))

= imag log(jωl I − A)− π

2
I .

Hence, ‖G‖2
ωl

equals

‖G‖2
ωl

= tr BT P B − 2

π
tr imag(BT P log(jωl I − A)B)).

Proof of Theorem 3.3.5. Using (3.23), the truncated norm ‖G‖2
[ωl,ωu] is given by

‖G‖2
[ωl,ωu] = 1

π
tr
(

−jĈ log(�̂)B̂ + tr D̂(ωu − ωl)
)

where �̂ := (ωu I + j Â)(ωl I + j Â)−1. Define T :=
[

I 0

−P I

]

, then using (3.20)

and Lemma 3.2.7(3,2), we have

log(�̂) = T −1 log
(

(ωu I + jT ÂT −1)(ωl I + jT ÂT −1)−1
)

T

= T −1 diag{log(�), log(�∗)}T .

where � := (ωu I + jA)(ωl I + jA)−1. Therefore, using above ‖G‖2
[ωl,ωu] is given

as

‖G‖2
[ωl,ωu] = − 1

π
tr
(

jĈ log(�̂)B̂
)

+ 1

π
tr D̂(ωu − ωl)

= − 1

π
tr
(

jĈT −1 diag{log(�), log(�∗)}T B̂
)

+ 1

π
tr D̂(ωu − ωl)

= − 1

π
j tr
(

(BT P + DT C) log(�)B − BT log(�∗)(P B + CT D)
)

+ 1

π
tr D̂(ωu − ωl)

= 2

π
tr imag

(

(BT P + DT C) log(�)B
)

+ 1

π
tr D̂(ωu − ωl)

where the last step follows from Lemma 3.2.7(4) which says log(�)∗ = log(�∗).



Chapter 4

Non-causal downsampling

4.1 Introduction

In most of the signal processing applications, information is taken from analog

sources and utilized in analog format. Due to the high quality of digital transmis-

sion, information is often converted in a discrete form at the front end from an

analog source and converted back to analog at the rear end. Sometimes in appli-

cations like image, audio, video etc, it is necessary to change the sampling rate

of the discrete signal. There are several reasons for this sampling rate conversion

such as different clocks in two digital hardwares, etc. The process of increasing

the sampling rate is known as upsampling or interpolation whereas decreasing the

sampling rate is known as downsampling or decimation [9,46]. The reduction fac-

tor of the sampling rate can be an integer or a rational number greater than one.

Instead of imposing any structure, we just assume that the downsampling process

is linear and h-time shift invariant. One approach to the problem of reconstruction

of an analog signal from a discrete signal uses the theory of sampled-data sys-

tem (see Chapter 2). The two distinctive features of this approach are the use of

signal generation models and the use of system norms for the measurement of re-

construction performance. The sampled-data system theory can also be applied to

downsampling problem, see [20]. The sampled-data set-up for the downsampling

problem is shown in Figure 4.1. Here the continuous time signal y is sampled with

Ge

we

ȳh ȳh′ y

v

u H S̄h Sh′

G
-

Figure 4.1: Downsampling in sampled-data setting
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sampling period h′ by a given sampler Sh′ , then the sampling rate of the resulting

discrete signal ȳh′ is changed by a downsampler S̄h to a slower rate of 1
h

:= 1
Mh′ ,

where M is a positive integer known as the downsampling factor. The output ȳh

of the downsampler is converted back to the analog domain by a Hold H. Any

discrete filter in between S̄h and H can be combined in either S̄h or H without

loss of generality. The continuous time signals y and v are modeled as the output

of a known linear continuous time invariant (LCTI) system G driven by a known

set of signals w (see Figure 4.1). G can be thought as a model of frequency char-

acteristics of the signals y and v . The choice of G depends upon the application

at hand. The main aim in the downsampling problem is to construct u as close as

possible to v with design parameter S̄h and H, given Sh′ and G. To take care of

factors like noise, the reconstructed signal u is compared with v instead of y. Also

normalization of the signal w allows us to write the reconstruction performance

in terms of the norm of the system Ge that maps w to e in Figure 4.1. We use

the L2 and L∞ system norms (defined in Chapter 2) to measure the reconstruction

performance in this chapter. The advantage of using sampled-data system theory

for downsampling is that it utilizes the inter-sample information available.

A general approach for downsampling in the signal processing literature is to

somehow band-limit the input signal y to the Nyquist frequency ωN := π/h (or

any multiple of the Nyquist frequency if one allows filter banks) to prevent aliasing

errors. This approach leads to error-free reconstruction. However in practice,

perfect band-limitedness is not possible, therefore we can think of using some error

criteria (such as L2 or L∞). The downsampling problem from the sampled-data

viewpoint is studied first by Ishii et. al [20], where they use the H∞ error criteria

to design causal optimal downsamplers S̄h (given H, Sh′ and G). Nagahara and

Yamamoto [43] designed a computationally efficient H∞ optimal downsamplers

(given H, Sh′ and G). The problem of designing non-casual downsamplers (given

H, Sh′ and G) and the problem of designing non-casual holds (given S̄h , Sh′ and

G) is essentially solved in [31, Proposition 2.1 and 3.1]. The problem of designing

the optimal non-causal downsamplers and holds simultaneously (given Sh′ and G)

is first studied in [31], but for a very limited class of the signal generators G. [31]

uses L2 and L∞ system norm for measuring the reconstruction performance.

In this chapter, we show how to extend the downsampling result of [31] for

all LCTI signal generators G. Here, the problem of designing joint non-causal

downsampler-and-hold, given Sh′ and G, is considered. This leads to a generic

treatment of the downsampling problem. In this chapter, we will also see how to

quantify the signal reconstruction error and its variation in the presence of noise.

This chapter is based on the papers [50, 52].

The outline of this chapter is as follows. We describe mathematical repre-

sentations of the sampled-data setup for the downsampling problem in Section

4.3. Then we define discrete lifting, discrete lifted-transforms, and lifted transfer

functions in Sections 4.4 and 4.5. An important result known as Rank theorem

is discussed in the Section 4.7. Mathematical formulations and simplifications of

the downsampling problem is done in Section 4.8. Section 4.9 and Section 4.10

contain the main results of this chapter i.e. solution of the downsampling problem
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with different error norms along with some examples and an expression for the

error norm. The effect of noise on the downsampling problem is discussed in the

Section 4.11.

4.2 Notations

Throughout this chapter h denotes the sampling period, ωN := π/h is the associ-

ated Nyquist frequency. Also h′ = h/M , where M is a positive integer known as

the downsampling factor. Linear discrete time invariant (LDTI) system means a

linear h-time shift invariant system.

A discrete signal ȳ with interval h′ means that the samples in the discrete signal

are separated by fixed h′ time. Sometimes we write ℓ2(Z,Cn) as ℓ2
h′ in order to

emphasize the fact that the discrete signals in ℓ2
h′ are generated from sampling a

continuous time signal with sampling period h′. In all other cases, discrete signals

are assumed to be generated from sampling a continuous time signal with sampling

period h unless otherwise stated.

We use the same notation of Chapter 2 given in Section 2.1 for signals and

systems. Similar to Section 2.1, the meaning of some of the systems, domains

and transforms will be cleared in the later sections. In addition to Section 2.1, a

downsampler S̄h in the lifted time domain is represented by calligraphic letter with

a acute on top e.g. Ś. A downsampler in the lifted frequency domain is represented

by capital letter with a acute on top e.g. Śh . If ȳ is a discrete signal with interval

h′ then in lifted domain it is represented as Ey. In an apologetic way, the lifted

z-transform of the signal ȳ is represented by Ey with a suffix (z). Similarly, the

lifted Fourier transform is represented by Ey with a suffix (ejθ ). Most of the time it

is clear from the context if the signal is in lifted (time) domain or lifted frequency

domain (lifted z-transform or Fourier transform). In case it is really necessary to

make a distinction, we use Z(Ey) for lifted z-transform and F(Ey) for lifted Fourier

transform of the signal ȳ. With a little bit of overloading the notations, the classic

discrete time Fourier transform of a discrete signal ȳ with interval h′ is represented

with different arguments as ȳ(ejν). Most of the time the signal domain is clear

from the context. Sometimes to make distinction with the time domain (or due

to historic reasons) we represent the classic discrete time Fourier transform of

ȳ in capitals as Ȳ (ejν). In addition to tables 2.1 and 2.2, the Table 4.2 (page

60) summarizes notation for downsamplers and discrete signals with interval h′ in

different domains.

SVD stands for singular value decomposition. Also the left singular vectors

of an operator A are the eigenvectors of AA∗ and the right singular vectors of an

operator A are the eigenvectors of A∗ A.

Throughout

ωk := θ + 2πk

h
, k ∈ Z

for a given θ ∈ [−π, π ].
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lifted lifted classic

time time frequency frequency

domain domain domain domain

Downsampler S̄h Śh Śh

Discrete signal

with interval h′ ȳ Ey
z Fourier

transform transform

Ey(z), Ey(ejθ ),

Z(Ey) F(Ey)

ȳ(ejν),

Ȳ (ejν)

Table 4.2: Notations for downsampler and discrete signal (with in-

terval h′) in different domains

4.3 Sampled data setup for downsampling

F Sy

y

we

ȳh ȳh′

v

u H S̄h Sh′

Gv

Gy

-

Figure 4.3: Downsampling in sampled-data setting

In this section we review standard mathematical descriptions of the compo-

nents of the sampled-data set up given in Figure 4.1 (for details see Chapter 2).

The sampled data setup for the downsampling problem is shown in more detail

in Figure 4.3. Here

• the signal generator G =
[

Gv

Gy

]

is an LCTI system with finite L2 and L∞

system norm [70]. The systems Gv and Gy are the partition of G with respect

to the signals v and y respectively.

• the sampler Sh′ is a linear h′-time shift invariant device which samples an

analog signal y : R → C at every h′ time instant and gives a discrete signal

ȳh′ : Z → C. More specifically

ȳh′ = Sh′ y : ȳh′ [n] =
∫ ∞

−∞
ψ(nh′ − s)y(s) ds. (4.1)

where ψ(t) is such that its classic frequency response ψ(jω) is uniformly

bounded. The ψ(t) is known as the sampling function. The only difference
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between the sampler Sh′ defined here and the sampler defined in (2.2) of

Chapter 2 is that Sh′ samples faster than the sampler S in (2.2).

The condition that ψ(jω) is uniformly bounded is needed to allow the ideal

sampler Sidl given in (2.3) even though it is not stable [30]. The ideal

sampler has sampling function δ(t) with uniformly bounded classic fourier

transform δ(jω) = 1.

• The downsampler S̄h is a device which operates on a discrete signal ȳh′ :

Z → C with interval h′ and produces a discrete signal ȳh : Z → Cr with

interval h = Mh′ at the output. Here M is called downsampling factor and

r is a positive integer. We assume the downsampler to be linear and M shift

invariant, i.e.

ȳh = S̄h ȳh′ : ȳh[n] =
∑

k∈Z

χ̄[Mn − k]ȳh′ [k], n ∈ Z (4.2)

where χ̄ =







χ̄0

...

χ̄r−1






and χ̄i is a sequence mapping Z to C for all i ∈

[0, · · · , r − 1]. The χ̄ is known as discrete sampling function. When χ̄ = δ̄

where δ̄ is unit impulse sequence, then the downsampler is called as ideal

downsampler and will be denoted by S̄idl. Note that any downsampler can

be seen as a series combination of h′-shift invariant discrete system with

impulse response χ̄ [n] followed by the ideal downsampler S̄idl.

Since in the sampled-data system theory time between the samples also play

an important role, therefore the M-shift invariance of the downsamplers is

equivalent to h = Mh′ time shift invariance.

• The hold H is a device which converts a discrete signal ȳh : Z → Cr with

interval h back to an analog signal u : R → C. Here r is a positive integer.

We assume H to be linear and h-time shift invariant, i.e.

u = H ȳh : u(t) =
∑

n∈Z

φ(t − nh) ȳh[n], t ∈ R

where φ(t) :=
[

φ0(t) φ1(t) · · · φr−1(t)
]

and φi : R → C for all

i ∈ [0, · · · , r − 1]. The φ(t) is known as hold function or interpolating

kernel.

Since the output of the downsampler is the input of the hold, the output dimen-

sion of the downsampler and the input dimension of the hold must be same.

Although in earlier chapters the terms interpolator and hold are used to denote

the same operator, in this chapter we use interpolator to mean the following.

Definition 4.3.1 (Interpolator). An interpolator F is a device which converts a

discrete signal ȳh′ : Z → C with interval h′ back to an analog signal u : R → C.
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S̄idl ȳh′ȳh

0 1 2 3 40 1 2

S̄idl ȳh′ȳh

0 1 2 3 40 1 2

Figure 4.4: The output of the ideal downsampler S̄idl with down-

sampling factor 2 (top). The output is not delayed by a sample if the

input is delayed by a sample (bottom).

Note that in this chapter, the interpolator’s input is a discrete signal with inter-

val h′ whereas the hold’s input is a discrete signal with interval h.

A downsampler followed by a hold (i.e. HS̄h) is an important component

throughout this chapter, so it deserves a special name:

Definition 4.3.2 (Hybrid interpolator). Any interpolator F is a hybrid interpolator

of order r if it can be represented as a downsampler (with output dimension r)

followed by a hold (with input dimension r) i.e. F := HS̄h .

Remark 4.3.3. In this chapter, we assumed the dimensions of signals y, v , ȳh′ and

u in the sampled-data setup (see Figure 4.3) are one. This is just for simplicity.

The result can be easily generalized to the case where the dimensions are greater

than one.

4.4 Discrete lifting in time domain

In general a downsampler given in (4.2) is a linear but not shift invariant system

(i.e. if we shift the input by one then its output is not delayed by one). This fact

can be seen in the following example.

Example 4.4.1. Consider the ideal downsampler S̄idl that downsamples the input

signal by a factor of 2,

ȳh = S̄idl ȳh′ : ȳh[n] = ȳh′ [2n], n ∈ Z.

Assume that the input ȳh′ [n] is non-zero only if n is even. Clearly, ȳh[n] is non-

zero for this input (see Figure 4.4(top)). However, if we delay our input ȳh′ by one

sample then output is not delayed by one sample. In fact, we have zero output in

this particular case (see Figure 4.4(bottom)).

Example 4.4.1 clearly shows that downsamplers are not shift invariant sys-

tem in general. This implies that techniques like transfer functions, frequency

responses etc. available for the linear shift invariant system cannot be written for
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k →−2

0 M − 1

−1

0 M − 1

0

0 M − 1

1

0 M − 1

n →
−2M

−M 0 M

2M

Figure 4.5: Discrete lifting Ef of f̄ [n] = sinc(n/M) with M = 4.

a downsampler. However, a downsampler with downsampling factor M is M shift

invariant. This means that if the input of the downsampler is delayed by M then

the output is delayed by 1 as shown below.

ȳh[n − 1] =
∑

k∈Z

χ̄[M(n − 1)− k]ȳh′ [k] =
∑

k∈Z

χ̄[Mn − (k + M)]ȳh′ [k]

=
∑

k∈Z

χ̄[Mn − k]ȳh′ [k − M].

To write the transfer function of the downsampler we need to transform the down-

sampler such that it is shift invariant. It means if we delay the input of the trans-

formed downsampler by 1 then its output must be delayed by 1 only. This goal

can be achieved if we lift the input of the downsampler [57]. Similar to lifting of

an analog signal, we can define lifting of a discrete signal with sampling interval

h′ as (see e.g. [65, 41] and the references cited therein).

Definition 4.4.2. For any discrete signal f̄ : Z → Cn f sampled at interval h′ =
h/M, the lifting (with respect to h) Ef : Z → {M → Cn f } is the sequence of

discrete functions { Ef [k]} defined as

Ef [k; m] = f̄ [Mk + m], k ∈ Z,m ∈ M

Here n f is an positive integer and M := {0, 1, · · · ,M − 1}.

For a given k, Ef [k] is a finite sequence which maps M to Cn f . Recall that the

lifting of an analog signal f : R → Cn f results in lifted signal f̆ where f̆ [k] is a

function which maps [0, h) to Cn f for a given k. Figure 4.5 shows the concept of

discrete lifting.
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Remark 4.4.3. The natural domain for m in Definition 4.4.2 is M because then

there exists a bijection between the signal f and its lifted signal Ef . However,

sometimes it is beneficial to define Ef [k; m] := f (kh + m) for arbitrary m ∈ Z.

The discrete time lifting is similar to the polyphase decomposition (see e.g.

[61]). It is clear from the above definition that if a discrete signal f̄ is generated

by sampling an analog signal with sampling period h i.e. h′ = h and M = 1 then

its discrete lifting is the same as the discrete signal f̄ . For this reason the discrete

lifting of such a signal is represented by f̄ .

Now, lifting the input ȳh′ turns the downsampler ȳh = S̄h ȳh′ in (4.2) into lifted

downsampler Śh which is given by the following convolution

ȳh = Śh Eyh′ : ȳh[n] =
∑

i∈Z

∑

m∈M

χ̄[Mn − Mi − m]ȳh′ [Mi + m], n ∈ Z

=
∑

i∈Z

∑

m∈M

Eχ[n − i ; −m]Eyh′ [i ; m]

=:
∑

i∈Z

Śh[n − i]Eyh′ [i] (4.3)

where for each k ∈ Z, Śh[k] : {M → C} → Cr is the lifted impulse response

system of the lifted system Śh . The lifted system Śh is shift invariant as

ȳh[n + 1] =
∑

i∈Z

Śh[n + 1 − i]Eyh′ [i]

=
∑

i∈Z

Śh[n − i]Eyh′ [i + 1]

Since the sampler Sh′ samples at interval h′ which is different from h, we can

(discrete) lift the output of the sampler Sh′ with respect to h. Lifting the input and

output of the sampler ȳh′ = Sh′ y result in the lifted sampler

Eyh′ = Śh′ y̆ : Eyh′[k; m] =
∑

i∈Z

∫ h

0

(

ψ
(

Mkh′ + mh′ − (hi + τ )
))

×

y(hi + τ ) dτ, k ∈ Z,m ∈ M

=
∑

i∈Z

∫ h

0

(

ψ
(

(k − i)h + (mh′ − τ )
))

y̆[i](τ ) dτ

=
∑

i∈Z

∫ h

0

(

ψ̆[k − i](mh′ − τ )
)

y̆[i](τ ) dτ

= :
∑

i∈Z

Śh′[k − i]y̆[i] (4.4)

where for each k ∈ Z, Śh′[k] : {[0, h) → C} → {M → C} is the lifted impulse

response system of the lifted system Śh′ . Clearly the system Śh′ is shift invariant.
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The advantage of (discrete/analog) lifting is that the lifted sampler Śh′ and the

lifted downsampler Śh are shift invariant which will allow us later to write a trans-

fer function and frequency response of these systems in Section 4.5.1. However,

this comes at a price of more difficult impulse responses.

For lifted Ğ and lifted Hold H̀ see Section 2.3.1 of Chapter 2.

4.5 Discrete lifting in frequency domain

Similar to the lifted z-transform of analog signals in Section 2.3.2, we can define

the lifted z-transform for discrete signals.

Definition 4.5.1. The (discrete) z-transform Ef (z; m) of a lifted discrete signal Ef
is defined as

Z( Ef ) = Ef (z; m) :=
∑

k∈Z

Ef [k; m]z−k =
∑

k∈Z

f̄ [Mk + m]z−k (4.5)

where m ∈ M. Z( Ef ) is also called (discrete) lifted z-transform of the signal f̄ .

It is clear from the above definition that if a discrete signal f̄ is generated by

sampling an analog signal with sampling period h then its z-transform is the same

as its lifted z-transform. For this reason the lifted z-transform of such a signal is

represented by f̄ (z). Similarly the (lifted) Fourier transform is defined as:

Definition 4.5.2. The (discrete) Fourier transform Ef (ejθ ; m) of a lifted discrete

signal Ef is defined as

F( Ef ) = Ef (ejθ ; m) :=
∑

k∈Z

Ef [k; m]e−jθk =
∑

k∈Z

f̄ [Mk + m]e−jθk (4.6)

where m ∈ M. F( Ef ) is also called (discrete) lifted Fourier transform of the signal

f̄ .

Clearly, for a given m, Ef (ejθ ; m) is the discrete time Fourier transform (see

[27]) of the sequence f̄ [Mk + m] and Ef (ejθ ; m) is periodic in θ with period 2π as
Ef (ej(θ+2π); m) = Ef (ejθ ; m).

Since lifting and z-transform are invertible processes, the inverse lifted z-

transform can be defined as a combination of the inverse z-transform and inverse

of the lifting process. The following example illustrates calculation of the (lifted)

Fourier transform.

Example 4.5.3. Consider the analog signal f (t) = 1[0,h)(t). Ideally sampling f

at interval h′, we have

f̄ [k] =
{

1 k ∈ M

0 elsewhere
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By Definition 4.4.2, the lifted signal Ef of f is given by

Ef [k; m] =
{

1 k = 0

0 k 6= 0

for all m ∈ M. Hence, the lifted Fourier transform of f̄ is Ef (ejθ ; m) = 1 for all

m ∈ M.

Following is a key result which relates the lifted z-transform of a discrete signal

f̄ with time interval h′ and its the classic z-transform.

Theorem 4.5.4 (Discrete key lifting formula). Consider a discrete signal f̄ : Z →
C with time interval h′ and let f̄ (z) be its classic z-transform. If f̄ (z) exists then

the lifted z-transform Ef (z; m) of f̄ [n] follows from its classic z-transform as

Ef (z; m) = 1

M

M−1
∑

i=0

f̄ (z̃i )z̃
m
i m ∈ M (4.7)

where z̃i = |z| 1
M ej

Arg z
M e

j2π i
M (Arg is the principle argument function used in (3.7))

are the M complex roots of the equation z̃M = z for a given z. Conversely the

classic z-transform of f̄ follows from the lifted z-transform as

f̄ (z̃) =
M−1
∑

m=0

Ef (z̃M ; m)z̃−m (4.8)

for a given z̃.

Proof. See Appendix 4.A (page 100).

The following corollary is immediate.

Corollary 4.5.5. Consider a discrete signal f̄ : Z → C with time interval h′ and

let f̄ (ejν), ν ∈ [−π, π ] represents its classic discrete time Fourier transform [27,

chap. 10]. If f̄ (ejν) exists then the lifted Fourier transform Ef (ejθ ; m) of f̄ [n]

follows from f̄ (ejν) as

Ef (ejθ ; m) = 1

M

M−1
∑

i=0

f̄ (ejωi h′
)ejωi h′m (4.9)

where as always ωi = θ+2π i
h

. Conversely f̄ (ejν) follows from the lifted fourier

transform as

f̄ (ejν) =
M−1
∑

m=0

Ef (ejνM ; m)e−jνm (4.10)
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f̄ [n] Ef [k; m]

Ef (ejθ ; m)f̄ (ejν)

Figure 4.6: Relation between various transforms and discrete key

lifting formula.

Proof. Set z = ejθ in (4.7) and z̃ = ejν in (4.8).

Remark 4.5.6. It is interesting to note that ejω0h′m, · · · , ejωM−1h′m (used in (4.9))

are mutually orthogonal. Let us define Eei (e
jθ ) ∈ CM whose m’th component is

given by Eei (e
jθ ; m) := 1√

M
ejωi h′m . Now, {Eei (e

jθ )}i∈M form an orthonormal basis

of the space CM as
〈

Eek(e
jθ ), Eei (e

jθ )
〉

= ∑M−1
m=0 Eei (e

jθ ; m)Eek(e
−jθ ; m) = δ̄[k − i].

The above fact will help later in obtaining the SVD of a sampler.

Figure 4.6 explains the relation between the various transforms and the discrete

key lifting formula.

The following examples illustrates the use of (4.9).

Example 4.5.7. Consider an analog signal f = sinc( t
h
). Sampling f at interval

h′ = h
M

, we have discrete signal f̄ [n] = sinc(n/M). The discrete time Fourier

transform of f̄ is given by

f̄ (ejν) =
{

1 ν ∈ [− π
M
, π

M
]

0 elsewhere

Therefore for θ ∈ [−π, π ],

f̄ (ejωi h′
) = f̄ (ej θ+2π i

M ) =
{

1 i = k M, k ∈ Z

0 elsewhere
.

Now, (4.9) gives the lifted Fourier transform

Ef (ejθ ; m) = 1

M
f̄ (ejω0h′

)ejω0h′m = 1

M
ejθ m

M .

See Figure 4.7 (page 68).
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| Ef (ejθ ; m)|

θ = π

m

M − 1

1
M

Figure 4.7: Magnitude plot of the lifted fourier transform Ef (ejθ ; m)

of f̄ [n] = sinc(n/M). Shown here for θ ∈ [−π, π ] only.

4.5.1 Transfer function in lifted frequency domain

The lifted transfer function of G and hold is already discussed in Section 2.3.2.

In this section, the transfer functions of lifted downsamplers and samplers (with

sampling period h′) are defined.

As in Section 2.3.2, the transfer function of a linear h-time shift invariant sys-

tem is defined as the z-transform of its lifted impulse response system.

Taking z-transform of the output ȳ and the input Eyh of a lifted downsampler

Śh in (4.3) results in lifted frequency domain downsampler

Z( ȳ) = ŚhZ( ȳh) : ȳ(z) = Śh(z)Eyh′(z)

where Śh(z) : {M → C} → Cr (it is the z-transform of the lifted impulse response

system of the lifted sampler Śh) is given by

ȳ(z) = Śh(z)Eyh′(z) : ȳ(z) =
∑

m∈M

Eχ(z; −m)Eyh′(z; m). (4.11)

Here Eχ(z) is the lifted z-transform (with lifting interval h) of the downsampling

function χ [n]. Śh(z) is called the transfer function of the lifted system Śh (or lifted

transfer function of S̄h). By the above equation, the transfer function Śh(z) is an

operator whose kernel is given by Eχ(z,−m). The derivation of (4.11) is given in

Appendix 4.A (page 102).

Similarly, taking z-transform of the output Eyh′ and the input y̆ of a lifted sam-

pler Śh′ in (4.4) results in lifted frequency domain sampler

Z(Eyh′) = Śh′Z( y̆) : Eyh′(z) = Śh′(z) y̆(z)

where Śh′(z) : {[0, h) → C} → {M → C} (it is the z-transform of the lifted
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impulse response system of the lifted sampler Śh′ ) is given by

Eyh′(z) = Śh′(z) y̆(z) : Eyh′(z; m) =
∫ h

0

(
∑

n∈Z

(ψ̆[n](mh′ − τ ))z−n) y̆(z; τ ) dτ

=
∫ h

0

ψ̆(z; mh′ − τ ) y̆(z; τ ) dτ (4.12)

Here ψ̆(z) is the lifted z-transform (with lifting interval h) of the sampling func-

tion ψ(t). Śh′(z) is called the transfer function of the lifted system Śh′ (or lifted

transfer function of Sh′). By the above equation, the transfer function Śh′(z) is an

operator whose kernel is given by ψ̆(z; mh′ − τ ).

4.6 Signal and System norms

In this section we define different norms for discrete lifted signals and systems.

This section closely follows Section 2.4.

Given a signal f ∈ ℓ2
h′ (the samples in the discrete signal are separated by

fixed h′ time). Consider the norm of a discrete signal f ∈ ℓ2
h′(Z,C

n),

‖ f ‖2
2 =

∑

i∈Z

‖ fi‖2
2 =

∑

k∈Z

∑

m∈M

‖ f (kh + m)‖2
2

=
∑

k∈Z

∑

m∈M

‖ Ef [k; m]‖2
2

=
∑

k∈Z

‖ Ef [k]‖2
ℓ2(M)

=: ‖ Ef ‖2
2. (4.13)

This defines the norm of a discrete lifted signal Ef . This also shows that lifting

a discrete signal f ∈ ℓ2
h′ , by definition results in a lifted signal Ef with the same

norm in the Hilbert space ℓ2(Z, ℓ2(M)). Here ℓ2(M) := ℓ2(M,Cn). The space

ℓ2(Z, ℓ2(M)) has inner product

〈x̆, y̆〉 =
∑

k∈Z

∑

m∈M

〈Ex[k; m], Ey[k; m]〉Cn .

Equation (4.13) also implies that ℓ2
h′ is isomorphic to ℓ2(Z, ℓ2(M)) [67, §7.4].

Therefore, the norms in both of the spaces can be denoted by ‖ · ‖2.

If a discrete lifted signal Ef is in ℓ2(Z, ℓ2(M)) then its Fourier transform F( Ef )
belongs to L2(T, ℓ2(M)) because

‖F( Ef )‖2
2 = 1

2π

∫ π

−π
‖ Ef (ejθ )‖2

ℓ2(M)
dθ =

∑

k∈Z

‖ Ef [k]‖2
ℓ2(M)

= ‖ Ef ‖2
ℓ2(Z,ℓ2(M))

= ‖ f̄ ‖2

ℓ2
h′
< ∞
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The equivalence of ‖F( f̆ )‖2 = ‖ f̆ ‖ℓ2(Z,L2[0,h)) is known as Parseval identity

which says that ℓ2(Z, ℓ2(M)) is isomorphic to L2(T, ℓ2(M)).

Remark 4.6.1. The space ℓ2(M,Cn) is isomorphic to space Cn×M with Hilbert-

Schmidt norm. Therefore, sometimes we write ℓ2(M,C) as CM .

4.6.1 System norms

To include systems whose domain/range belongs to ℓ2
h′ (e.g. downsampler S̄h and

fast sampler Sh′) in the definitions of the system norms L∞, zl H∞, L2 and zlH2,

we have to change S̃ in Section 2.4.3 to mean L2[0, h) or Cn or ℓ2(M,Cn). Con-

sequently, the meaning of S̃i , S̃o, R̃ and R̃H S is modified. For example, the L∞

norm of the downsampler S̄h equals

‖S̄h‖L∞ = ess sup
θ∈[−π,π ]

‖Śh(e
jθ )‖ < ∞ (4.14)

where Śh(e
jθ ) is the (lifted) transfer function of Śh and ‖Śh(e

jθ )‖ is given by

‖Śh(e
jθ )‖ = sup

‖x‖2=1

‖Śh(e
jθ )x‖2 x ∈ ℓ2(M,Cn)

A result similar to Lemma 2.4.7 can be stated for downsamplers also.

Lemma 4.6.2. Consider a downsampler given by (4.2). If the downsampling

function χ of the downsampler belongs to ℓ2
h′ , then the downsampler belongs to

L∞ ∩ L2.

Proof. The proof is similar to the proof of Lemma 2.4.7.

4.7 Rank theorem

In time domain, it is not so clear when a given interpolator, is a hybrid interpolator

of a given order r . However, it is somewhat clear in the (lifted) frequency domain

as shown in this section.

First, we write the hybrid interpolator F in the lifted frequency domain.

Lemma 4.7.1. The hybrid interpolator F := HS̄h in lifted frequency domain is

an operator

ŭ = F̀ Eyh′ : ŭ(ejθ ; τ ) =
M−1
∑

m=0

˘̺ (ejθ ; τ ; m)Eyh′(ejθ ; m)

where the kernel ̺ can be expressed in terms of sampling and hold functions (see

Section 4.3) as

˘̺ (ejθ ; τ ; m) = φ̆(ejθ ; τ ) Eχ(ejθ ; −m). (4.15)
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Figure 4.8: Sampled data setup with hybrid interpolator of order-r .

Proof.

ŭ(ejθ ; τ ) = φ̆(ejθ ; τ ) ȳh(e
jθ ) = φ̆(ejθ ; τ )

M−1
∑

m=0

Eχ(ejθ ; −m)Eyh′(ejθ ; m)

=
M−1
∑

m=0

φ̆(ejθ ; τ ) Eχ(ejθ ; −m)Eyh′(ejθ ; m)

The above lemma is useful if we have an interpolator F̀ and we want to repre-

sent it as a cascade of a downsampler and a hold i.e. as a hybrid interpolator.

Now we concentrate on obtaining a condition for an interpolator such that it

is a hybrid interpolator. Consider an order r hybrid interpolator F shown in Fig-

ure 4.8. In this case the downsampling function χ̄[n] of downsampler S̄h has r

rows. Clearly the lifted fourier transform ȳh(e
jθ ) of the output ȳh of the downsam-

pler has r rows. Therefore at each θ ∈ [−π, π ], we have ȳh(e
jθ ) ∈ Cr . Hence,

rank Śh(e
jθ ) ≤ r at a given θ . We can obtain such an upper bound for hybrid inter-

polator F := HS̄h also. Since F̀ = H̀ Śh and rank Śh(e
jθ ) ≤ r at a given θ , there

must exist an upper bound on rank F̀ at each θ . This upper bound is r as shown in

the following lemma.

Theorem 4.7.2 (Rank theorem). Given an interpolator F and assume that the

transfer function F̀(ejθ ) exists. If F is a hybrid interpolator of order r then

rank F̀ ≤ r ∀θ ∈ [−π, π ].

Proof. See Appendix 4.A (page 102).

By Theorem 4.7.2, an interpolator F is a hybrid interpolator of order r only if

rank(F̀) is at most r for all θ ∈ [−π, π ].

Since the input of the downsampler is a discrete signal, we can expect that the

rank of the downsampler (and hence the rank of hybrid interpolator) in the lifted

domain must have an upper bound. Indeed.
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Corollary 4.7.3. The rank of a hybrid interpolator rank F̀(ejθ ) at a given θ ∈
[−π, π ] is less than or equal to M.

Proof. Since the input Eyh′(ejθ ) of Śh(e
jθ ) in lifted frequency domain is in CM at a

fixed θ , we have (Ker Śh(e
jθ ))⊥ ⊆ CM at each θ . Hence,

(Ker F̀(ejθ ))⊥ ⊆ (Ker Śh(e
jθ ))⊥ ⊆ CM

and rank(F̀(ejθ )) ≤ M at a given θ .

Corollary 4.7.3 says that increasing the order r of a hybrid interpolator beyond

M is unnecessary. Therefore, without loss of generality we take r ≤ M in this

chapter.

4.8 Non-causal downsampling problem

In this section, we define the downsampling problem and simplify it as much as

possible using lifting. K represents either L2 or L∞ and K represents the Hilbert-

Schmidt (H S) norm if K = L2 or induced 2-norm if K = L∞, in this section.

Throughout this section we use short-hand Sy := Sh′Gy. Clearly, Sy is a sampler.

We also assume that the output dimension of the downsampler and the input

dimension of the hold is given and it is equal to r .

Now, we state the downsampling problem more precisely.

Problem P1 (Downsampling problem) : Given Gv,Gy ∈ L2 ∩ L∞, find a down-

sampler S̄h ∈ L∞ (with output dimension r ∈ Z+) and a hold H ∈ L∞ (with input

dimension r) such that ‖Gv − HS̄hSh′Gy‖K is minimized.

The optimal downsampler and hold in Problem P1 can be non-causal. Stability

of all systems in the downsampling setup (see Figure 4.3) is an important criteria.

This is because we never want to have an unbounded output of a system due to

some bounded input or noise at any stage of signal processing.

Remark 4.8.1. As explained in Section 2.6, stability of Gv and Gy implies that

they are operators which maps L2(R) to L2(R). Similarly, we need a stable hold

H and downsampler S̄h , thus H is an operator which maps ℓ2(Z) to L2(R) and

S̄h is an operator which maps ℓ2
h′(Z) to ℓ2(Z).

Clearly, if we have a solution of the downsampling problem then the hybrid

interpolator F := HS̄h belongs to L∞. Therefore, in order to solve the down-

sampling problem, we consider the following problem

Problem P2 : Given Gv,Gy ∈ L2 ∩ L∞, find a hybrid interpolator F ∈ L∞ of at

most order r ∈ Z+ such that ‖Gv − FSh′Gy‖K is minimized.

To solve Problem P1, we first obtain a solution to Problem P2 and then write

the resulting optimal hybrid interpolator as a cascade of a stable downsampler
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and hold. We will see later that this approach is easier than solving Problem P1

directly.

A simplification of Problem P2 is possible if Sy := Sh′Gy ∈ L∞ ∩ L2, which

is indeed the case under some weak assumptions as shown in following Lemma.

Lemma 4.8.2. Given LCTI system Gy ∈ L2 and a sampler Sh′ with sampling

function ψ(t) such that |ψ(jω)| is uniformly bounded in ω. Define sampler Sy :=
Sh′Gy and let ψy be its sampling function. Then,

1. ψy(t) := ψ(t) ∗ gy(t) where ∗ represents the analog convolution operator

and gy is the impulse response of system Gy.

2. ψy ∈ L2.

3. For almost all given θ ∈ [−π, π ], the lifted transfer function Śy(e
jθ ) of

sampler Sy is a mapping from L2[0, h) to CM and it has an SVD (modulo

ordering) of the form

Śy(e
jθ )w̆ =

√

M

h

∑

k∈M

αk(e
jθ )

〈

w̆, p̆k(e
jθ )
〉

Eek(e
jθ ), w̆ ∈ L2[0, h)

(4.16)

where for fixed θ , αk(e
jθ ) ∈ C, ĕk(e

jθ ) ∈ L2[0, h) , p̆k(e
jθ ) ∈ L2[0, h), and

Eek(e
jθ ) ∈ CM such that

αk(e
jθ ) :=

√

∑

i∈Z

|ψy(jωk+Mi )|2,

ĕk(e
jθ ; τ ) := 1√

h
ejωk τ , τ ∈ [0, h)

p̆k(e
jθ ; σ) :=

∑

i∈Z

ψ∗
y(jωk+Mi )

αk

ĕk+Mi (e
jθ ; σ), σ ∈ [0, h)

Eek(e
jθ ; m) := 1√

M
ejωkmh′

, m ∈ M.

Here ωk = θ+2πk
h

, k ∈ Z.

4. Sy ∈ L∞ ∩ L2.

Proof. See Appendix 4.A (page 102).

Although the ideal sampler is not stable, the above lemma allows us to take Sh′

to be an ideal sampler as long as the LCTI system Gy ∈ L2.

Remark 4.8.3. As explained in Section 2.6, stability of sampler Sy implies that it

is an operator which maps L2(R) to ℓ2(Z).
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Theorem 4.7.2 says that an interpolator F is a hybrid interpolator of order r

only if rank(F̀) ≤ r at all θ ∈ [−π, π ]. This result is used to solve Problem P2 by

translating it to an equivalent lifted frequency domain problem as shown below.

Theorem 4.8.4. Given Gv,Gy ∈ L∞∩L2. Define F̀opt at almost every θ ∈ [−π, π ]

as

F̀opt(e
jθ ) := arg min

F̀(ejθ )

‖Ğv(e
jθ )− F̀(ejθ )Śy(e

jθ )‖K (4.17)

with constraint rank F̀opt ≤ r at each θ ∈ [−π, π ]. If F̀opt is well-defined and

bounded, then Fopt is an interpolator that minimizes ‖Gv − FSy‖K over all inter-

polators F with rank F̀ ≤ r at each θ ∈ [−π, π ].

Proof. See Appendix 4.A (page 103).

If interpolator Fopt in the above theorem is also a hybrid interpolator then the

above theorem says that doing point-wise minimization in lifted Fourier domain

is sufficient to solve Problem P2. Moreover, if interpolator Fopt in the above

theorem is also a hybrid interpolator with stable downsampler and hold then we

have a solution of Problem P1. Therefore, in order to solve the downsampling

problem, we consider the following problem.

Problem P3 : Given Gv,Gy ∈ L2 ∩ L∞, find a well-defined and bounded F̀(ejθ )

with rank F̀(ejθ ) ≤ r such that ‖Ğv(e
jθ )− F̀(ejθ )Śy(e

jθ )‖K is minimized at almost

each θ ∈ [−π, π ].

To solve Problem P1, we first obtain a solution to Problem P3 and then write the

resulting optimal interpolator as a cascade of a stable downsampler and hold. This

factorization of the optimal interpolator is straight-forward as we will see later.

In the rest of the chapter, the transfer function Ğ(ejθ ) of a system G is abbrevi-

ated as Ğ at given θ . Unless necessary, we do this for all signals too.

4.9 L2 optimal downsampling

The L2 downsampling problem is the Problem P1 with L2 system norm. As ex-

plained in Section 4.8, this problem can be solved by obtaining a solution of Prob-

lem P3 with the Hilbert-Schmidt norm first and then writing the resulting optimal

interpolator as a cascade of a stable downsampler and hold. Section 4.9.1 con-

tains some basic results that are important in the solution of Problem P3 with the

Hilbert-Schmidt norm. The solutions of Problem P3 and the L2 downsampling

problem are presented in Section 4.9.2.
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4.9.1 Preliminaries

This section describes some basic results which are useful in obtaining a solution

of Problem P3 with Hilbert-Schmidt norm i.e. obtaining

F̀opt := arg min
F̀

‖Ğv − F̀ Śy‖H S

with constraint rank F̀opt ≤ r at each θ ∈ [−π, π ]. Here the minimization is point-

wise in θ . At almost all θ , the operator Ğv : L2[0, h) → L2[0, h) is a Hilbert-

Schmidt operator as Gv ∈ L2 (see Lemma 2.4.5). Similarly, because of finite rank,

the operator Śy is a Hilbert-Schmidt operator at almost all θ (see Lemma 4.8.2).

Since F̀opt is bounded at almost all θ by Lemma 2.4.4, Problem P3 can be thought

of as a special case of a generic problem of obtaining

Fopt := arg min
F∈Fr

‖A − F B‖H S

where A : H → H0 and B : H → H1 are Hilbert-Schmidt operators, F : H1 →
H0 is a linear operator (not necessarily bounded) and Fr denotes the set of all

bounded linear operators mapping the space H1 to H0 and that have rank at most

r . The spaces H, H0 and H1 are separable Hilbert spaces so that these spaces

have an orthonormal basis [47, theorem 3.52]. In our special case of Problem P3,

H = H0 = L2[0, h) and H1 = CM .

Also, let P : H → H represent the orthogonal projection on (Ker B)⊥ and

AN := A(I − P),

throughout this section. We also define the set for a linear operator G

NG :=
{

{0, 1, · · · , rank G − 1} if rank G is finite

N if rank G is infinite
. (4.18)

Since the image of a Hilbert-Schmidt (hence compact) operator is not necessarily

closed, Im B is not necessarily closed [63, theorem 2.14]. An example of such

a case is discussed in [31, theorem 5.1]. However, in most of the downsampling

problems later, B is a finite dimensional operator, therefore Im B is closed. For

generality, in this preliminaries section we assume that Im B is not necessarily

closed.

An algorithm for obtaining Fopt := arg minF∈Fr
‖A − F B‖H S is presented at

the end of this section.

Since (Ker AP)⊥ ⊆ (Ker B)⊥, the orthogonal projection P helps us in iden-

tifying the space where F could play a role. Using B(I − P) = 0, we have the

following result.

Lemma 4.9.1.

‖A − F B‖2
H S = ‖AN ‖2

H S + ‖AP − F B‖2
H S. (4.19)

where AN := A(I − P).
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Proof. See Appendix 4.B (page 104).

From (4.19) it is clear that an F ∈ Fr that minimizes ‖A − F B‖H S also

minimizes ‖AP − F B‖H S. If a rank-r F is such that F B cancels out the dominant

r singular values in an SVD of AP , then this F is optimal. This fact is used in the

following theorem to obtain Fopt.

Theorem 4.9.2. Suppose an SVD of AP is given by

APx =
∑

i∈NAP

σi 〈x, ei 〉 fi , x ∈ H (4.20)

where {ei } and { fi } are orthonormal sequences in H and H0 respectively, and {σi }
is a real non-increasing non-zero sequence.

Define a space W :=span{e0, e1, . . . , er−1}. Now, for a given r ≤ rank(AP)

Foptx :=
r−1
∑

i=0

σi

〈

B+x, ei

〉

fi , x ∈ H1 (4.21a)

=
r−1
∑

i=0

σi

〈

Q B+x, ei

〉

fi (4.21b)

is bounded iff W ⊆ Im B∗ ⊕ (Im B∗)⊥. Here B+ : H1 → H is the pseudo-

inverse of the operator B [13, Definition 2.2] and Q : H → W is the orthogonal

projection on the space W. Now, if the Fopt is bounded then it minimizes ‖AP −
F B‖H S over all F ∈ Fr .

Proof. See Appendix 4.B (page 104).

The uniqueness of Fopt in the above theorem depends upon the singular values

of AP . For example, if r = 1 and all singular values of AP are same then we have

multiple solutions.

Remark 4.9.3. The dependence of the space W on r forced us to write the The-

orem 4.9.2 for r ≤ rank AP only. Because if r > rank(AP) then W is the space

span{e0, e1, . . . , erank AP−1} for all r > rank(AP) and Fopt := arg minF∈Fr
‖A −

F B‖H S is given by (4.21a) with r = rank AP as AP − Fopt B = 0. Taking σi = 0

for all i ≥ rank(AP), we can write Fopt, for r less than or equal to minimum of

dimH, dimH0 and dimH1 (denoted by min(dimH, dimH0, dimH1)) as

Foptx =
r−1
∑

i=0

σi

〈

B+x, ei

〉

fi , x ∈ H1. (4.22)

Note that rank(AP) ≤ min(dimH, dimH0, dimH1).
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Note that, if W ⊆ Im B∗ ⊕ (Im B∗)⊥, then B+ may still be unbounded in

(4.21a) whereas the operator Q B+ is always bounded.

The condition that W ⊆ Im B∗ ⊕ (Im B∗)⊥ in Theorem 4.9.2 is met if the

ei ’s (see (4.20)) belong to the set of right singular vectors of B. This is proved in

following corollary.

Corollary 4.9.4. Suppose an SVD of AP is given by (4.20) and that operator

B : H → H1 is defined by

Bx =
∑

i∈NB

βi 〈x, gi 〉 hi x ∈ H (4.23)

where {gi }i∈NB
and {hi }i∈NB

are orthonormal sequences in H and H1 respec-

tively, and βi 6= 0. If ei = gn(i) for some n(i) — in other words {ei } ⊂ {gk} —

then

Foptx :=
r−1
∑

i=0

σi

βn(i)

〈

x, hn(i)

〉

fi x ∈ H1. (4.24)

minimizes ‖AP − F B‖H S over all F ∈ Fr .

Proof. See Appendix 4.B (page 106).

Having obtained the Fopt, it is natural to seek for the minimal error norm ‖A −
Fopt B‖H S .

Corollary 4.9.5. Let Fopt as in Theorem 4.9.2. Then,

‖A − Fopt B‖2
H S = ‖A‖2

H S − ‖Fopt B‖2
H S.

Proof. See Appendix 4.B (page 106).

This may be surprising because Fr is not a subspace of the space of bounded

linear operators. Yet we still have this Pythagoras type result. Now we can sum-

marize the steps for obtaining Fopt := arg minF∈Fr
‖A − F B‖H S in the form of

Algorithm 1.

4.9.2 L2 optimal downsampling solution

Recall that Sy := Sh′Gy. The Problem P3 with Hilbert-Schmidt norm can be

solved by application of Algorithm 1. Among the important parameters to find in

application of Algorithm 1 are the orthogonal projection P̆ on the space (Ker Śy)
⊥,

and an SVD of the operator Ğv P̆ at almost every θ ∈ [−π, π ]. Having obtained

an SVD of the operator Śy in Lemma 4.8.2, we can immediately write down an

orthonormal basis {p̆k}k∈M,αk 6=0 of the space (Ker Śy)
⊥, hence P̆ at almost every

θ ∈ [−π, π ] as

P̆x =
∑

k∈M,αk 6=0

〈x, p̆k〉 p̆k, x ∈ L2[0, h). (4.25)
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Algorithm 1 For Fopt := arg minF∈Fr
‖A − F B‖H S

Require: A and B are Hilbert-Schmidt operators

Obtain the orthogonal projection P on (Ker B)⊥

if AP = 0 then

Fopt = 0

else

Obtain SVD of AP and ei defined in (4.20).

if ei ∈ Im B∗ ⊕ (Im B∗)⊥ then

Obtain B+

Fopt is given by (4.21a).

else

Fopt ∈ Fr does not exist.

return

end if

end if

Calculate ‖A − Fopt B‖H S using Corollary 4.9.5

return Fopt , ‖A − Fopt B‖H S

The next step in Algorithm 1 is to obtain an SVD of the operator Ğv P̆ at almost

every θ ∈ [−π, π ].

Lemma 4.9.6. Given LCTI system Gv ∈ L∞ ∩ L2. Using all the notations and

conditions of Lemma 4.8.2 and (4.25), an SVD (modulo ordering) of the operator

Ğv P̆ : L2[0, h) → L2[0, h) at almost all θ ∈ [−π, π ] is given by

Ğv P̆w̆ =
∑

n∈M,αn 6=0

σn 〈w̆, p̆n〉 q̆n (4.26)

where

σn =

√

∑

i∈Z |Gv(jωn+Mi )ψy(jωn+Mi )|2

αn

,

q̆n(τ ) = 1

σnαn

∑

i∈Z

Gv(jωn+Mi )ψ
∗
y(jωn+Mi )ĕn+Mi (e

jθ ; τ )

and τ ∈ [0, h).

Proof. See Appendix 4.B (page 107).

Clearly rank(Ğv P̆) ≤ rank(P̆) at a given θ . Since Śy and Ğv P̆ share right

singular vectors, we can invoke Corollary 4.9.4. Therefore, according to the Al-

gorithm 1, we have all the basic tools to obtain a solution of Problem P3. For

properly writing the results we need the definition of Dominant index set:
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Definition 4.9.7. The dominant index set is defined as an ordered set of the indices

of the dominant r elements of a bounded sequence S := {σ0, σ1, · · · }. It is denoted

by Dr (S).

For example if S := {10, 2, 9, 4, 1} then D3(S) = {0, 2, 3} and D4(S) =
{0, 2, 3, 1}. Note that r in Dr (S) cannot be greater than cardinality of the S.

The following theorem, which is one of the main results of this chapter, de-

scribes a solution of Problem P3 (with the Hilbert-Schmidt norm).

Theorem 4.9.8. Given LCTI system Gv ∈ L∞ ∩ L2. Let S be the set of finite

singular values of the operator Ğv P̆ at almost every θ ∈ [−π, π ] i.e. S :=
{σk}k∈M,αk 6=0. Given r ≤ M, define F̀opt as

F̀opt Eyh′ :=
∑

k∈Dr (S)

Ŵk

〈

Eyh′,
1√
M

Eek

〉

, (4.27)

where

Ŵk :=
∑

i∈Z Gv(jωk+Mi )ψ
∗
y(jωk+Mi )e

j(ωk+Mi )τ

∑

i∈Z |ψy(jωk+Mi )|2
, (4.28)

whenever θ ∈ A := {θ ∈ [−π, π ] : Ğ y(e
jθ ) 6= 0} and τ ∈ [0, h). For θ ∈

[−π, π ]\A, we can take F̀opt = 0. If this interpolator Fopt is well-defined and

stable, then it minimizes ‖Gv − FSy‖L2 over all interpolators F with rank F̀ ≤ r

at each θ ∈ [−π, π ]..

Proof. Note that since Gv ∈ L2, the Ğv is a Hilbert-Schmidt operator for almost

all θ . Also, because of finite rank, the operator Śy is a Hilbert-Schmidt operator

for almost all θ and its image is closed. Now, the result follows from Corollary

4.9.4 and Remark 4.9.3.

Note that the set Dr (S) can change with θ ∈ [−π, π ]. Theorem 4.9.8 solves

the Problem P3 with the Hilbert-Schmidt norm and gives the kernel of the interpo-

lator Fopt in the lifted frequency domain. However, to solve the L2 downsampling

problem P1, we have to also write the optimal interpolator Fopt as a cascade of

a stable downsampler Śh,opt and hold H̀opt. To this end, (4.15) is very useful as

shown in the following result.

Theorem 4.9.9. Let Fopt, Ŵk , S be as in Theorem 4.9.8. Define the lifted down-

sampler Śh,opt and hold H̀opt such that their transfer functions have kernel

Eχopt(e
jθ ; −m) := 1

M









e−jωk0
mh′

...

e
−jωkr−1

mh′









, (4.29a)

φ̆opt(e
jθ ; τ ) :=

[

Ŵk0
, · · · , Ŵkr−1

]

(4.29b)
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−5π 0 5π
ω →

G(jω)1
1√
2

Figure 4.9: G(jω) of Example 4.9.11

at each θ ∈ [−π, π ] respectively. Here {k0, k1, · · · , kr−1} := Dr (S). If the

downsampler S̄h,opt and hold Hopt are well-defined and stable, then they solve the

L2 downsampling problem.

Proof. Note that the inner product equals
〈

y̆h′(ejθ ), Eek(e
jθ )
〉

CM
=
∑

m∈M

y̆h′(ejθ ; m)e−j θ+2πk
h

mh′
.

The rest of the proof follows from (4.15).

Note that the ki in Theorem 4.9.9 can change with θ ∈ [−π, π ]. Also note that

if the optimal downsampler S̄h,opt and hold Hopt are well-defined then interpolator

F̀opt given by (4.27) is a hybrid interpolator by definition.

Remark 4.9.10. In general, for any bistable invertible mapping J , the H̀opt J and

J−1 Śh,opt are also optimal hold and downsampler.

For any k ∈ M, we call the set of frequencies

{θ/h + 2ωN(k + Mi)}i∈N

the h′-aliased frequencies of the frequency θ/h + 2ωNk. Theorem 4.9.8 clearly

states that these h′-aliased frequencies play a crucial role in deciding the optimal

downsampler (see the construction of S in Theorem 4.9.8) for any finite M . This

fact is illustrated with an example given below.

Example 4.9.11. Let Gv and Gy be LCTI systems with classic frequency response

Gv(jω) and Gy(jω) respectively. Also, let Gv(jω) = Gy(jω) = G(jω) where

G(jω) =























1 ω ∈ [−π, π ]

0.95 ω ∈ [−3π,−π ] ∪ [1π, 3π ]
1√
2

ω ∈ [−4π,−3π ] ∪ [3π, 4π ]

0 elsewhere

.

G(jω) is shown in Figure 4.9. Also, suppose that the sampler Sh′ has sampling

function ψ(t) whose classic frequency response is given by

ψ(jω) =
{

1 ω ∈ [−4π, 4π ]

0 elsewhere
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χ̄opt[n]0.5

0

φopt(t)

1

0

Figure 4.10: Discrete sampling function χ̄opt[n] of the L2 op-

timal downsampler and the Hold function φopt(t) of L2 opti-

mal hold (right) in Example 4.9.11. The left figure also shows
1
2

cos(π t) sinc( t
2
) (dotted).

and M = 2, h = 1. The Nyquist frequency is ωN = π/h = π .

Now, the input of the sampler Sh′ is bandlimited to ωB := 4π rad/sec as G(jω)

is bandlimited to 4π rad/sec. Since the sampling interval of Sh′ i.e. h′ (= 1
2
) is

greater than the Nyquist interval (defined as π
ωB

) required for its input i.e. 1
4
, there

are h′-aliased frequencies at the output of sampler Sh′ (see Figure 4.3) [27, §5.1].

Calculating the singular values σi (see Lemma 4.9.6) in the presence of h′-aliased

frequencies, we find that

σ0 =
√

5/6 ≈ 0.913, σ1 = 0.95 ∀θ ∈ [−π, π ]

Note thatσ1 > σ0 for all θ ∈ [−π, π ]. Now, it follows from Theorem 4.9.8 that if

r = 1 then the L2 optimal interpolator in lifted frequency domain is given by

F̀optx = ejω1τ + ejω−1τ

2

〈

x,
1

2
ejω1mh′

〉

m ∈ {0, 1}

at almost all θ ∈ [−π, π ]. Using (4.29) and the inverse lifted transform, we

can write the discrete sampling function χ̄opt[n] and hold function φopt(t) of the

optimal downsampler and hold as (see also Figure 4.10)

χ̄opt[n] = 1

2
sinc(

n

2
)(−1)n

φopt(t) = 1

2

(

ej2ωNt sinc(t)+ e−j2ωN t sinc(t)
)

= cos(2ωNt) sinc(t).
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Since the optimal downsampler and hold are well-defined, Fopt is an order-1 hy-

brid interpolator. Also, since sinc[n] ∈ ℓ2, sinc(t) ∈ L2 and | cos(t)| is bounded,

it follows from lemma’s 2.4.7 and 4.6.2 that the optimal downsampler and hold are

stable (i.e. in L∞).

4.9.3 L2 Error Norm

To quantify the reconstruction error (in the optimal case i.e. F = Fopt), we need

the error system norm ‖Gv − FoptSy‖L2 . The following theorem states how to

obtain it.

Theorem 4.9.12. Let Fopt, set S and set A be as in Theorem 4.9.8. The L2 system

norm of the operator FoptGy is given by

‖FoptGy‖2

L2 = 1

2πh

∫

A

∑

k∈Dr (S)

σ 2
k dθ (4.30)

where σk’s are defined in Lemma 4.9.6. Now the L2 system norm of the system

Gv − FoptGy is given by

‖Gv − FoptGy‖2

L2 = ‖Gv‖2

L2 − ‖FoptGy‖2

L2 (4.31)

where Fopt is defined in Theorem 4.9.8.

Proof. For θ ∈ A, ‖F̀opt Śy‖2
H S = ∑

k∈Dr (S)
σ 2

k as the Hilbert-Schmidt norm of

the operator F̀opt Śy is given by the sum of squares of singular values. For θ ∈ Ac,

F̀opt Śy = 0 for any bounded F̀opt, which implies ‖F̀opt Śy‖H S = 0 at those θ . Now,

(4.30) and (4.31) follow from (2.27) and Corollary 4.9.5.

Example 4.9.13. For the system of Example 4.9.11, we find that

‖FoptSy‖2

L2 = 1

2πh

∫ π

−π
0.952 dθ

and

‖Gv − FoptSy‖2

L2 = ‖Gv‖2

L2 − ‖FoptSy‖2

L2

= 1

2πh

∫ π

−π

(

1 + 1

2
+ 2 × 0.952 − 0.952

)

dθ = 2.403.

Therefore, the reconstructed power (‖FoptSy‖2

L2/‖Ğv‖2

L2 ) is 27.29%. If we do full

order downsampling (in this case order M = 2) then the F̀opt will be of rank-2 and

‖FoptSy‖2

L2 = 1

2πh

∫ π

−π
0.952 + 5/6 dθ = 1.736

Then, the reconstructed power is 52.53%. This is the theoretical limit, i.e. the

maximum that can be obtained by any downsampler and hold of any order, given

Gv and Sy.
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4.10 L∞ optimal downsampling

The L∞ downsampling problem is the Problem P1 with L∞ system norm. As

explained in Section 4.8, this problem can be solved by obtaining a solution of

Problem P3 with the the induced 2-norm first and then writing the resulting op-

timal interpolator as a cascade of a stable downsampler and hold. Section 4.10.1

contains some basic results that are important in the solution of Problem P3 with

the induced 2-norm. The solutions of Problem P3 and the L∞ downsampling

problem are presented in Section 4.10.2.

4.10.1 Preliminaries

This section describes some basic results which are useful in obtaining a solution

of Problem P3 with induced 2-norm i.e. obtaining

F̀opt := arg min
F̀

‖Ğv − F̀ Śy‖

with constraint rank F̀opt ≤ r at each θ ∈ [−π, π ]. Here the minimization is point-

wise in θ . At almost all θ , the operator Ğv : L2[0, h) → L2[0, h) is a compact

operator as Gv ∈ L2 (see Lemma 2.4.5). Similarly, because of finite rank, the

operator Śy is a compact operator at almost all given θ (see Lemma 4.8.2). Since

F̀opt is bounded at almost all θ by Lemma 2.4.4, Problem P3 can be thought as a

special case of a generic problem of obtaining

Fopt := arg min
F∈Fr

‖A − F B‖

where A : H → H0 and B : H → H1 are compact operators, F : H1 → H0 is

a linear operator (not necessarily bounded) and Fr denotes the set of all bounded

linear operators mapping the space H1 to H0 and that have rank at most r . The

spaces H, H0 and H1 are separable Hilbert spaces so that these spaces have an

orthonormal basis [47, theorem 3.52]. Also, P : H → H represents the orthogonal

projection on (Ker B)⊥, and we define AN and Tγ as

AN := A(I − P),

Tγ := I − γ−2 AN A∗
N ∀γ ∈ (‖AN ‖,∞),

where ‖ · ‖ represents the induced 2-norm of the operator throughout this section.

NG for an operator G has the same meaning as in Section 4.9.1 (see (4.18)). Sim-

ilar to Section 4.9.1, we assume that Im B is not necessarily closed in this section.

An algorithm for obtaining Fopt := arg minF∈Fr
‖A − F B‖ is presented at the

end of this section.

Similar to (4.19), the orthogonal projection P provides some clue about the

lower bound of ‖A − F B‖ for all bounded F . Indeed,

Lemma 4.10.1. infF ‖A − F B‖ ≥ ‖AN ‖.
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Proof. Since B(I − P) = 0, we have AN = (A − F B)(I − P). Therefore,

‖AN ‖ ≤ ‖A − F B‖‖I − P‖ = ‖A − F B‖.

The following is a standard but important step in L∞ optimization [71, 31]:

Lemma 4.10.2. If γ > ‖AN ‖ then

‖A − F B‖ ≤ γ ⇔ ‖T
− 1

2
γ (AP − F B)‖ ≤ γ

Proof. See Appendix 4.C (page 108).

It is also clear from Lemma 4.10.2 that if γ > ‖AN ‖ then the singular values

of T
− 1

2
γ AP (or singular values of (AP)∗T −1

γ AP) provide a clue about optimal

Fopt at the given γ .

We start with an SVD of AA∗ and other simplifications that are later useful in

obtaining singular values of (AP)∗T −1
γ AP for a given γ .

Lemma 4.10.3. Let an SVD of AA∗ : H0 → H0 be given by

AA∗x =
∑

k∈NA

α2
k 〈x, vk〉 vk,

where {αk} is a non-increasing non-zero sequence. Define for a given fi , i ∈ NAP

(see (4.20)) the subspace

Vi := span{vk |k ∈ NA& 〈vk, fi 〉 6= 0} (4.32)

and the orthogonal projection Pi onto the subspace Vi . Then fi ∈ Vi and an SVD

(modulo ordering) of Pi AA∗ Pi : H0 → Vi exists and it has the form

Pi AA∗ Pi x =
∑

k∈NA
〈vk , fi 〉6=0

α2
k 〈x, vk〉 vk, x ∈ H0. (4.33)

Proof. Since A is assumed to be a compact operator, its SVD exists [69]. Hence

SVD of AA∗ exists. As Im A = Im AA∗ = span{v1, v2, · · · } and fi ∈ Im AP ⊆
Im A, therefore we have for each i that fi ∈ Vi . Now, (4.33) follows from Pi x =
∑

k∈NA
〈vk , fi 〉6=0

〈x, vk〉 vk .

In Lemma 4.10.3, there is some degree of freedom in selection of the singular

vectors vk of AA∗. However, once the singular vectors vk of AA∗ is fixed then the

space is Vi is fixed.

The following corollary is immediate.

Corollary 4.10.4. The spaces Vi (defined in Lemma 4.10.3) are invariant under

the operator AA∗.
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Proof. The proof follows from the fact that the vk are eigenvectors of AA∗.

Without loss of generality an SVD of Pi AA∗ Pi can be written by rearranging

(4.33) as

Pi AA∗ Pi x =
∑

n∈NPi A

α2
in 〈x, vin〉 vin, x ∈ H0 (4.34)

where {α2
in}n∈N are in descending order, α2

in are non-zero singular values of AA∗

and vin are singular vectors of AA∗ such that 〈vin, fi 〉 6= 0.

In general, obtaining singular values of (AP)∗T −1
γ AP for a given γ can be

very cumbersome but in some special cases it is relatively easy. One of the special

case happens if the following assumption is satisfied.

Assumption A1 : The subspaces {Vi }i∈NAP
defined in (4.32) are mutually or-

thogonal.

The above is a strong assumption. However in case of the downsampling this is

true as we will see later (this assumption is also satisfied in [31, theorem 5.1]).

Since fi ∈ Vi (see Lemma 4.10.3), therefore if Assumption A1 is satisfied

then fi ⊥ V j , j 6= i . Hence, the orthogonal projection Pi on the space Vi satisfies

Pi f j = δ̄[i − j] f j .

Under Assumption A1, an SVD of the operator (AP)∗T
− 1

2
γ AP can be ob-

tained, which eventually helps in obtaining Fopt, as follows:

Lemma 4.10.5. Suppose an SVD of AP exists and is given by (4.20). Assume that

for each i , an SVD of Pi AA∗ Pi : H0 → Vi exists and has the form given in (4.34).

If γ > ‖AN ‖ and Assumption A1 is satisfied for the spaces {Vi }i∈NAP
, then an

SVD of (AP)∗T −1
γ AP exists and it is given by (modulo ordering)

(AP)∗T −1
γ APx =

∑

i∈NAP

η2
i (γ ) 〈x, ei 〉 ei

where

η2
i (γ ) =



γ−2 +
(

σ 2
i

∑

k

| 〈 fi , vik〉 |2
1 − γ−2α2

ik

)−1




−1

, (4.35)

and ei and fi are as defined in (4.20).

Proof. See Appendix 4.C (page 108).

If Assumption A1 is satisfied for the spaces {Vi }i∈NAP
, then the above Lemma

also says that if the right hand side of (4.35) is negative for some value of γ then

that γ must be less than or equal to ‖AN ‖. Also, the singular values of T
− 1

2
γ AP

are ηi (γ ) and the right singular vectors are ei (for all i).
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Even after obtaining an SVD of (AP)∗T
− 1

2
γ AP , our original problem of ob-

taining arg minF∈Fr
‖A − F B‖ is still two-fold as both minF∈Fr

‖A − F B‖ and

Fopt are still unknown. However, if we restrict F to a particular class then we can

obtain both.

Lemma 4.10.6. Suppose that an SVD of AP is given by (4.20). Given r ≤
rank AP, define the set F that consists of all rank-r F given by

Fx =
∑

i∈C

σi

〈

B+x, ei

〉

fi , x ∈ H1 (4.36)

where C is any set of different r non-negative integers in the set NAP and ei and fi

are as defined in (4.20). For convenience, we define F0 ∈ F as that F which has

C = Dr (S) (see Definition 4.9.7) where S := {αi0}i∈NAP
. If Assumption A1 is

satisfied for the spaces {Vi }i∈NAP
, then F0 = arg minF∈F‖A − F B‖ and

‖A − F0 B‖ = max
i /∈Dr (S)

i∈N

{αi0, ‖AN ‖} . (4.37)

Proof. See Appendix 4.C (page 110).

Note that F might contains unbounded operators, therefore F 6⊆ Fr .

In the following theorem we show that F0 defined in Lemma 4.10.6 not only

minimizes ‖A − F B‖ over the set F but also over Fr under certain conditions.

Theorem 4.10.7. For a given r ≤ rank AP, let the set Dr (S) be as in Lemma

4.10.6. Also suppose that an SVD of AP has the form given in (4.20). If space

span{ei }i∈Dr (S) ⊆ Im B∗ ⊕ (Im B∗)⊥ and Assumption A1 is satisfied for the

spaces {Vi }i∈N then a rank-r bounded Fopt := arg minF∈Fr
‖A − F B‖ exists and

can be chosen as F0 (see Lemma 4.10.6). Also, ‖A − Fopt B‖ = ‖A − F0 B‖ (see

(4.37)).

Proof. See Appendix 4.C (page 111).

Remark 4.10.8. Theorem 4.10.7 is for r ≤ rank AP only. However, if r >

rank(AP) then Fopt := arg minF∈Fr
‖A − F B‖H S is given by (4.21a) with r =

rank AP as AP − Fopt B = 0 and ‖A − F0 B‖ = ‖AN ‖ in this case. Taking σi = 0

for all i ≥ rank(AP), we can write Fopt, for r less than or equal to dimH0 or

dimH1 whichever is smaller, as (4.22).

In Theorem 4.10.7, we need span{ei }i∈Dr (S) ⊆ Im B∗ ⊕ (Im B∗)⊥ for the

F0, defined in Lemma 4.10.6, to be bounded. However, if F0 is unbounded then

a bounded Fopt ∈ Fr may still exists such that ‖A − Fopt B‖ = ‖A − F0 B‖.

However for the application we are considering in this chapter (the downsampling

problem), the condition span{ei }i∈Dr (S) ⊆ Im B∗ ⊕ (Im B∗)⊥ is satisfied (see

Theorem 4.10.11).
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Remark 4.10.9. The construction of Vi given in Lemma 4.10.3 is done in such

a way that it suits the downsampling application. However, if we can construct

subspaces Vi ⊆ H0 such that

1. For all i ∈ NAP , fi ∈ Vi and fi ⊥ V j , j 6= i .

2. Vi are invariant subspaces of AA∗.

3. The subspaces {Vi }i∈NAP
are mutually orthogonal.

4. For all i ∈ NAP , there exists an SVD of Pi AA∗ Pi of the form

Pi AA∗ Pi x =
∑

n∈NPi A

α2
in 〈x, vin〉 vin, x ∈ H0 (4.38)

where Pi is the orthogonal projection onto the subspace Vi and 〈vin, fi 〉 6=
0, ∀n.

then it can be proved that the Lemma 4.10.5, Lemma 4.10.6 and Theorem 4.10.7

remain unchanged for this newly defined Vi .

Now we can summarize all the steps for obtaining Fopt := arg minF∈Fr
‖A −

F B‖ in a form of Algorithm 2.

Algorithm 2 For Fopt := arg minF∈Fr
‖A − F B‖

Require: A and B are linear bounded operators

Obtain the orthogonal projection P on (Ker B)⊥

Obtain SVD of AP and ei , fi defined in (4.20).

Obtain Vi defined in Lemma 4.10.3 and S defined in Lemma 4.10.6

if the Vi ’s satisfy Assumption A1 & span{ei }i∈Dr (S) ∈ Im B∗ ⊕ (Im B∗)⊥

then

Obtain B+

Fopt = F0 (see Lemma 4.10.6).

else

Procedure limitation

return nil

end if

Calculate ‖A − Fopt B‖ by using (4.37)

return Fopt , ‖A − Fopt B‖

4.10.2 L∞ optimal downsampling solution

Problem P3 with induced 2-norm can be solved by application of the Algorithm

2 (page 87). As in Section 4.9, we define Sy := Sh′Gy. The orthogonal projection

operator P̆ on the space (Ker Śy)
⊥, and an SVD of the operator Ğv P̆ at almost
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every θ ∈ [−π, π ], required in Algorithm 2, are given by (4.25) and Lemma 4.9.6

respectively.

The next thing in Algorithm 2 is to find the invariant spaces Vi based on an

SVD of ĞvĞ∗
v and left singular vectors q̆i of Ğv P̆ (see Lemma 4.9.6). An SVD

(modulo ordering) is given by [31]

ĞvĞ∗
vw̆ =

∑

i∈Z

Gv(jωi )
2 〈w̆, ĕi 〉 ĕi .

where ĕi are defined in Lemma 4.8.2. Using Lemma 4.9.6, an SVD (modulo or-

dering) of the operator Ğv P̆ : L2[0, h) → L2[0, h) at almost all θ ∈ [−π, π ] is

given by

Ğv P̆w̆ =
∑

i∈M,αi 6=0

σi 〈w̆, p̆i 〉 q̆i .

Hence, the Vi defined in Lemma 4.10.3 in this case equal

Vi := span{ĕi+Mk}k∈Qi
, (4.39)

where Qi := {k ∈ N : 〈q̆i , ĕi+Mk〉 6= 0} and q̆i are defined in Lemma 4.9.6.

Assumption A1 is satisfied in the downsampling problem as shown in the

following lemma.

Lemma 4.10.10. Vi defined in (4.39) are mutually orthogonal.

Proof. For i 6= j , Vi ⊥ V j as ĕk ∀k ∈ Z are orthogonal to each other at each

θ ∈ [−π, π ].

By the above Lemma the Vi ’s are (mutually) orthogonal (Assumption A1),

therefore we can proceed further according to Algorithm 2. Suppose P̆i represents

the orthogonal projection onto the space Vi at each θ ∈ [−π, π ]. Since, the ĕk are

eigenvectors of the operator ĞvĞ∗
v, we have for every w̆ ∈ L2[0, h) the

P̆i ĞvĞ∗
v P̆i w̆ =

∑

k∈Qi

Gv(jωi+Mk)
2 〈w̆, ĕi+Mk〉 ĕi+Mk

Now, we give a solution of Problem P3 with induced 2-norm using Theorem

4.10.7.

Theorem 4.10.11. Given LCTI systems Gv,Gy ∈ L∞ ∩ L2. Define ĞN := Ğv(I −
P̆), |Gvmax,i | := maxl∈Qi

{|Gv(jωi+Ml)|}, and S := {|Gvmax,i |}i∈M at almost

every θ ∈ [−π, π ]. Given r ≤ M, define F̀opt as

F̀opt Eyh′ :=
∑

k∈Dr (S)

Ŵk

〈

Eyh′ ,
1√
M

Eek

〉

, (4.40)
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where Dr (S) is defined in Definition 4.9.7 and Ŵk is defined in (4.28), whenever

θ ∈ A := {θ ∈ [−π, π ] : Ğ y(e
jθ ) 6= 0} and τ ∈ [0, h). For θ ∈ [−π, π ]\A,

we can take F̀opt = 0. If this interpolator Fopt is well-defined and stable, then

it minimizes ‖Gv − FSy‖L∞ over all interpolators F with rank F̀ ≤ r at each

θ ∈ [−π, π ]. The optimal norm is given by

‖Gv − FoptSy‖L∞ = ess sup
θ∈[−π,π ]

‖Ğv − F̀opt Śy‖ (4.41)

where

‖Ğv − F̀opt Śy‖ = max
i /∈Dr (S),i∈M

(

|Gvmax,i |, ‖ĞN‖
)

Proof. At each θ ∈ [−π, π ], Śy(e
jθ ) is a finite dimensional operator. Therefore at

almost each θ ∈ [−π, π ], Im Śy(e
jθ ) is closed. The rest of the proof follows from

Lemma 4.10.10, Theorem 4.10.7 and Remark 4.10.8.

The quantity ess supθ∈[−π,π ] ‖ĞN‖ is known as Parrott lower bound [45]. Note

that in (4.40) the set S is defined as a set of all singular values of Ğv P̆ at a given θ

whereas in (4.27) the set S is defined as a set of maximal singular values of P̆i Ğv.

Remark 4.10.12. To solve the L∞ downsampling problem, we have to also write

the optimal interpolator Fopt (defined in (4.40)) as a cascade of a stable downsam-

pler Śh,opt and hold H̀opt. This can be done by using the same technique adopted in

Theorem 4.9.9. Define Śh,opt(e
jθ ) and hold H̀opt(e

jθ ) with kernels given in (4.29)

using the set S defined in Theorem 4.10.11. If the downsampler S̄h,opt and hold

Hopt are well-defined and stable, then they solve the L∞ downsampling problem.

Note that if the optimal downsampler S̄h,opt and hold Hopt are well-defined then

interpolator F̀opt given by (4.40) is a hybrid interpolator by definition.

In general, calculation of the Parrott lower bound can be very tricky but if

Gv(jω) has finite support then, the calculation can be done by using matrices. The

matrix associated with the operator ĞN : L2[0, h) → L2[0, h) with respect to the

orthonormal bases {ĕi } is the array [akl ]k,l∈Z where akl =
〈

ĞNĕl , ĕk

〉

[69, §7.6]. It

can shown that

akl =







Gv(jωk)

(

δ̄kl − ψ∗
y(jωk)ψy(jωl )

α2
rem(k,M)

)

rem(k − l,M) = 0

0 rem(k − l,M) 6= 0

(4.42)

where δ̄kl := δ̄[k − l] and rem(k,M) := k − ⌊k/M⌋M where ⌊k/M⌋ denotes the

largest integer less than or equal to k/M . This technique is used in the following

example.

Example 4.10.13. Consider the Example 4.9.11 but here we find the L∞ optimal

downsampling solution instead of the L2 optimal downsampling solution.
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Since M = 2, we have M = {0, 1}. For i ∈ M, qi defined in Lemma 4.9.6

becomes,

q̆0 =
{

2√
5
ĕ0 + 1√

5
ĕ2, θ ∈ [−π, 0]

2√
5
ĕ0 + 1√

5
ĕ−2, θ ∈ [0, π ]

q̆1 = 1√
2
(ĕ−1 + ĕ1), θ ∈ [−π, π ]

Then for every θ ∈ [−π, π ], Gvmax,i defined in Theorem 4.10.11 becomes

|Gvmax,i | =
{

1 i = 0

0.95 i = 1
.

Clearly D1(S) = {0} in the Theorem 4.10.11. Using Theorem 4.10.11, if r = 1

then an L∞ optimal interpolator in lifted frequency domain is given by,

F̀optx =







(

2
3
ejω0τ + 1

3
ejω2τ

) 〈

x, 1
2
ejω0mh′〉

θ ∈ [−π, 0]
(

2
3
ejω0τ + 1

3
ejω−2τ

) 〈

x, 1
2
ejω0mh′〉

θ ∈ [0, π ]

where m ∈ {0, 1}. Using (4.15) and the inverse lifted transform, we can write

the discrete sampling function χ̄opt[n] and the hold function φopt(t) of the optimal

downsampler and hold as

χ̄opt[n] = 1

2
sinc(

n

2
)

φopt(t) = 2

3
sinc(t)+ 1

6
cos(

7π t

2
) sinc(

t

2
)

See Figure 4.11. Since the optimal downsampler and hold are well-defined, Fopt is

an order-1 hybrid interpolator. Also, since sinc[n] ∈ ℓ2, sinc(t) ∈ L2 and | cos(t)|
is bounded, it follows from lemma’s 2.4.7 and 4.6.2 that the optimal downsampler

and hold are stable (i.e. in L∞).

Since Gv(jω) has finite support, we can obtain an equivalent finite dimensional

matrix representation of the operator ĞN for norm calculation (see [69, §7.2]).

This yields,

‖ĞN‖ = 0.95 ∀θ ∈ [−π, π ]

and

‖Gv − FoptSy‖L∞ = ess sup
θ∈[−π,π ]

max(0.95, ‖ĞN‖) = 0.95.

Comparing with Example 4.9.11, we can say that the L2 and L∞ downsampling

problem may have entirely different solutions. However, if we do full order down-

sampling (in this case order 2), then new F̀opt is of rank-2 and will be the same as

L2 optimal one. In this case, D2(S) = {0, 1} and

‖Gv − FoptSy‖L∞ = ess sup
θ∈[−π,π ]

‖ĞN‖ = 0.95
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χ̄opt[n]0.5

0

φopt(t)

5
6

0

Figure 4.11: Discrete sampling function χ̄opt[n] of the L∞ opti-

mal downsampler and Hold function φopt(t) of the L∞ optimal hold

(right). The left figure also shows 1
2

sinc( t
2
) (dotted).

Comparing again with Example 4.9.13, increasing rank of F̀ from 1 to 2, decreases

the L2 reconstruction error but not the L∞ reconstruction error.

4.11 Downsampling in the presence of noise

F Sy

y

we

ȳh ȳh′

w̄n

w̄c

Ḡn

v

u
H S̄h Sh′

Gv

Gy

-

Figure 4.12: Sampled-data setup for downsampling in the presence

of noise

In this section, we will see the effect of colored noise on the L2 and L∞ down-

sampling problem. Noise analysis in this section is just an application of the the-

ory we discussed in the previous sections. The setup for noise analysis is shown in

Figure 4.12. Here w̄c : Z → C is colored noise modeled by the h′-time invariant

system Ḡn with input signal w̄n : Z → C which is the white noise. The h′-time

invariant system Ḡn ∈ L∞ is defined as

w̄c = Ḡnw̄n : w̄c[k] =
∑

i∈Z

ḡn[k − i]w̄n[i] (4.43)
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F

[

w

w̄n

]

e

ȳh ȳh′

v

u
H S̄h

[

Sy Ḡn

]

[

Gv 0
]

-

Figure 4.13: Modified Sampled-data set-up for noise

where ḡn is the impulse response of the discrete system Ḡn.

For noise analysis, using the sampled-data system theory, we redraw Fig-

ure 4.12 as Figure 4.13. Figure 4.13 is similar to Figure 4.3 except for the signal

models and the input signal. Now, the error system in the presence of noise is

defined as the mapping from

[

w

w̄n

]

to e and it is of the form

Ge := GA − FGB

where

GA :=
[

Gv 0
]

(4.44)

GB :=
[

Sy Ḡn

]

(4.45)

and Sy := Sh′Gy is stable sampler with sampling function ψy (see Lemma 4.8.2).

Our aim is to obtain an F := HS̄h of order at most r such that ‖Ge‖L2 or

‖Ge‖L∞ is minimized. Note that it is not necessary that a hybrid interpolator F (of

given order) that minimizes ‖Ge‖L2 also minimizes ‖Ge‖L∞ .

Similar to Section 4.9 and Section 4.10, Algorithm 1 and 2 will be used to

obtain the L2 and L∞ optimal interpolator in the presence of noise. In both Al-

gorithm 1 and 2, we start with obtaining the projection operator P̆B on the space

(Ker ĞB)
⊥ at each θ . Having an SVD of ĞB, we can immediately get an orthonor-

mal basis of (Ker ĞB)
⊥, hence the orthogonal projector P̆B. We start with an SVD

of Ğn at each θ ∈ [−π, π ]. This can be obtained by following lemma.

Lemma 4.11.1. Given is an h′-time invariant system Ḡn ∈ L∞ as defined in (4.43)

with Ḡn(z) representing the classic z-transform of the kernel gn[i] of the operator

Ḡn. Then, at each θ ∈ [−π, π ], an SVD (modulo ordering) of the lifted operator

Ğn is given by

Ğn Ewn =
M−1
∑

k=0

Ḡn(e
jωk h′

) 〈 Ewn, Eek〉 Eek

where the Eek are defined in Lemma 4.8.2.

Proof. See Appendix 4.D (page 113).
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Remark 4.11.2. Note that since rank Ğn(e
jθ ) ≤ M at almost each θ ∈ [−π, π ],

Ḡn ∈ L∞ implies Ḡn ∈ L2 (follows from Lemma 2.4.6). Therefore Ḡn ∈ L∞ is

same as Ḡn ∈ L2 ∩ L∞.

Since Gv,Sy and Ḡn are stable (see also Lemma 4.8.2), we have that GA and GB

are stable. Now, the stability of GA and GB implies that they are operators mapping

L2(R)×ℓ2(Z) to L2(R)×ℓ2(Z). Lifting the input signal
[

w w̄n

]T =: ws results

in the lifted signal w̆s where w̆s[k] belongs to space L2[0, h) × CM . The inner

product of the space L2[0, h)× CM is defined as
〈[

w1

w2

]

,

[

w3

w4

]〉

= 〈w1, w3〉L2[0,h) + 〈w2, w4〉CM

where w1, w3 ∈ L2[0, h) and w2, w4 ∈ CM .

Now, an SVD of the operator ĞB can be obtained by noting that Śy = Śh′ Ğy

and Ğn share the same left singular vectors.

Lemma 4.11.3. Let Gv, Gy and Ḡn are in L2 ∩ L∞. Also let αk , p̆k and Eek be as in

Lemma 4.8.2. At almost all θ ∈ [−π, π ], the lifted operator ĞB can be expressed

as

ĞBw̆s =
∑

k∈M,µk 6=0

µk

〈

w̆s, p̆n,k

〉

Eek, w̆s ∈ L2[0, h)× CM (4.46)

where w̆s :=
[

w̆

Ewn

]

,

µk :=
√

M

h
α2

k + |Ḡn(ejωk h′
)|2, and p̆n,k := 1

µk

[√

M
h
αk p̆k Ḡn(e

jωk h′
)∗Eek

]T

where ∗ is complex conjugate operator.

Proof. See Appendix 4.D (page 113).

Now the orthogonal projection operator P̆B onto the space of (Ker ĞB)
⊥ is

straight-forward because we have an orthonormal basis of the space (Ker ĞB)
⊥.

In fact, P̆B is given by

P̆B x̆ =
∑

k∈M,µk 6=0

〈

x̆, p̆n,k

〉

p̆n,k, x̆ ∈ L2[0, h)× CM (4.47)

The next step in Algorithm 1 and 2 is to obtain the SVD of the operator ĞA P̆B.

Lemma 4.11.4. Let Gv, Gy and Ḡn are in L2 ∩ L∞. Also let p̆n,k , and µk be

as in Lemma 4.11.3. If P̆B : L2[0, h) × CM → L2[0, h) × CM denotes the

orthogonal projection into the space (Ker ĞB)
⊥, then an SVD (modulo ordering)

of the operator ĞA P̆B at almost every θ ∈ [−π, π ] is given by

ĞA P̆Bw̆s =
∑

k∈M,µk 6=0

ρk

〈

w̆s, p̆n,k

〉

q̆k , w̆s ∈ L2[0, h)× CM (4.48)



94 Chapter 4. Non-causal downsampling

where the q̆k are defined in Lemma 4.9.6, p̆n,k are defined in Lemma 4.11.3 and

ρk =
√

M

h

√

∑

i∈Z |Gv(jωk+Mi )ψ∗
y(jωk+Mi )|2

µk

Proof. See Appendix 4.D (page 114).

From this point onwards Algorithm 1 and 2 differ, so L2 and L∞ optimal down-

sampling in the presence of noise is treated in two different subsections given next.

4.11.1 L2 optimal downsampling in the presence of noise

This section describes the L2 optimal downsampling problem in the presence of

noise. Since ĞB and ĞA P̆B share right singular vectors, we can use Corollary

4.9.4. Therefore, according to the Algorithm 1, we have all the basic tools to

obtain an interpolator that minimizes ‖GA −FGB‖L2 over all interpolators F with

rank F̀ ≤ r at each θ ∈ [−π, π ]. This eventually helps in solving the L2 optimal

downsampling problem in the presence of noise.

Theorem 4.11.5. Let Gv, Gy and Ḡn are in L2 ∩ L∞. Also let αk , ψy(jω) and

Eek be as in Lemma 4.8.2. Let S be the set of finite singular values ρk of the

operator ĞA P̆B defined in Lemma 4.11.4 at almost every θ ∈ [−π, π ] i.e. S :=
{ρk}k∈M,µk 6=0. Given r ≤ M, define F̆n,opt as

F̆n,opt Eyh′ =
∑

k∈Dr (S)

Ŵn,k

〈

Eyh′ ,
1√
M

Eek

〉

, (4.49)

where

Ŵn,k :=
∑

i∈Z Gv(jωk+Mi )ψ
∗
y(jωk+Mi )e

j(ωk+Mi )τ

α2
k + h

M
|Ḡn(ejωk h′

)|2
, (4.50)

whenever θ ∈ A := {θ ∈ [−π, π ] : ĞB(e
jθ ) 6= 0} and τ ∈ [0, h). For θ ∈

[−π, π ]\A, we can take F̆n,opt = 0. If this interpolator Fn,opt is well-defined and

stable, then it minimizes ‖GA − FGB‖L2 over all interpolators F with rank F̀ ≤ r

at each θ ∈ [−π, π ].

Proof. Similar to the proof of the Theorem 4.9.8.

Note that set Dr (S) can change at each θ .

Remark 4.11.6. In order to write the optimal interpolator F̀n,opt (defined in (4.49))

as a cascade of a stable downsampler Śh,opt and hold H̀opt, we can use the same
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technique adopted in Theorem 4.9.9. Define lifted downsampler Śh,opt and hold

H̀opt such that their transfer functions have kernel

Eχopt(e
jθ ; −m) := 1

M









e−jωk0
mh′

...

e
−jωkr−1

mh′









, (4.51a)

φ̆opt(e
jθ ; τ ) :=

[

Ŵn,k0
, · · · , Ŵn,kr−1

]

. (4.51b)

at each θ ∈ [−π, π ] respectively. Here {k0, k1, · · · , kr−1} := Dr (S) where the

ordered set Dr (S) is defined in Theorem 4.11.5. If the downsampler S̄h,opt and

hold Hopt are well-defined and stable, then they minimize ‖GA − HS̄hGB‖L2 over

all downsamplers and holds. Note the effect of the noise on S, ki and Ŵn,ki
. Also

note that if the optimal downsampler S̄h,opt and hold Hopt are well-defined then

interpolator F̀n,opt given by (4.49) is a hybrid interpolator by definition.

The optimal error norm ‖GA − Fn,optGB‖L2 can be found using following

lemma.

Lemma 4.11.7. The squared L2 system norm of the operator Fn,optGB is given by

‖Fn,optGB‖2

L2 = 1

2πh

∫

A

∑

k∈Dr (S)

ρ2
k dθ (4.52)

where ρk is defined in Lemma 4.11.4 and Fn,opt is given by (4.49). The L2 system

norm of the operator GA − Fn,optGB is given by

‖GA − Fn,optGB‖2

L2 = ‖Gv‖2

L2 − ‖Fn,optGB‖2

L2 (4.53)

Proof. The proof is similar to the proof of Theorem 4.9.12.

Intuitively, non-zero noise increases the reconstruction error. Indeed.

Corollary 4.11.8. ‖GA − Fn,optGB‖L2 ≥ ‖Gv − FoptSy‖L2

Proof. Since

√

h
M
µk ≥ αk , we have that

ρk

σk
= αk

√

h
M µk

≤ 1. This further implies

‖Fn,optGB‖L2 ≤ ‖FoptSy‖L2 . It means ‖GA −Fn,optGB‖L2 ≥ ‖Gv −FoptSy‖L2 by

Lemma 4.11.7 and Theorem 4.9.12.

This fact is also illustrated with the following example.

Example 4.11.9. Consider Example 4.9.11 but here we find the L2 optimal down-

sampling solution in the presence of noise. Also, we assume that Ḡn is the identity.

Calculating the singular values ρi as defined in Lemma 4.11.4, we find that

ρ0 = 0.79 θ ∈ [−π, π ]
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χ̄opt[n]0.5

0

φopt(t)

0.78

0

Figure 4.14: Discrete sampling function χ̄opt[n] of the L2 opti-

mal downsampler and Hold function φopt(t) of the L2 optimal hold

(right) in the presence of noise in Example 4.11.9. The left figure

also shows 1
2

cos(π t) sinc( t
2
) (dotted).

ρ1 = 0.84 θ ∈ [−π, π ]

Note that ρ1 > ρ0 for all θ ∈ [−π, π ]. Now, it follows from Theorem 4.11.5

that if r = 1 then the L2 optimal interpolator in lifted frequency domain is given

by

F̆n,optx = 0.78
ejω1τ + ejω−1τ

2

〈

x,
1

2
ejω1mh′

〉

for almost all θ ∈ [−π, π ] and m ∈ {0, 1}.
Using (4.51) and the inverse lifted transform, we can write the discrete sam-

pling function χ̄opt[n] and hold function φopt(t) of the optimal downsampler and

hold as

χ̄opt[n] = 1

2
sinc(

n

2
)(−1)n

φopt(t) = 0.78 cos(2ωNt) sinc(t).

See Figure 4.14. Since the optimal downsampler and hold are well-defined, Fopt is

an order-1 hybrid interpolator. Also, since sinc[n] ∈ ℓ2, sinc(t) ∈ L2 and | cos(t)|
is bounded, it follows from lemma’s 2.4.7 and 4.6.2 that the optimal downsampler

and hold are stable (i.e. in L∞).

Also, using (4.52) and (4.53), we obtain

‖Gv‖2

L2 = 1

2πh

∫ π

−π
(1 + 1

2
+ 2(0.952)) dθ = 3.305
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‖Fn,optSh′Gy‖2

L2 = 1

2πh

∫ π

−π
ρ2

1 dθ = 0.707

Hence,

‖Gv − FoptSh′Gy‖2

L2 = 2.5983.

Therefore, the reconstructed power (‖FoptSy‖2

L2/‖Ğv‖2

L2) is 21.38%. If we do full

order downsampling (in this case order 2), then Fopt is of order-2 and

‖FoptSh′Gy‖2

L2 = 1

2πh

∫ π

−π
ρ2

1 + ρ2
0 dθ = 1.3317

Then, the reconstructed power is 40.29%. Comparing with Example 4.9.13, the

recovery is reduced in the presence of noise as expected.

4.11.2 L∞ optimal downsampling in the presence of noise

This section describes how discrete noise affects the L∞ optimal downsampling

problem. Similar to Section 4.10, obtaining a general L∞ solution can be tricky

but if Assumption A1 is satisfied then the problem can be solved. Since ĞAĞ∗
A =

ĞvĞ∗
v and the left singular vectors q̆k of ĞA P̆B (see (4.48)) are the same as the

left singular vectors of Ğv P̆ (see (4.26)), we have that the subspaces Vi in the

presence of noise are the same as in the case of without noise (see (4.39)). It is

already proved in Lemma 4.10.10 that these subspaces Vi are mutually orthogonal

i.e. Assumption A1 holds in this case.

Now, we obtain an interpolator that minimizes ‖GA − FGB‖L∞ over all inter-

polators F with rank F̀ ≤ r at each θ ∈ [−π, π ]. This eventually helps in solving

the L∞ optimal downsampling problem in the presence of noise.

Theorem 4.11.10. Let Gv, Gy and Ḡn are in L2 ∩ L∞. Also let αk , ψy(jω) and Eek

be as in Lemma 4.8.2. Let |Gvmax,i | and Dr (S) be as in Theorem 4.10.11. Given

r ≤ M, define F̆n,opt as

F̆n,opt Eyh′ =
∑

k∈Dr (S)

Ŵn,k

〈

Eyh′ ,
1√
M

Eek

〉

, (4.54)

where Ŵn,k is defined in (4.50), whenever θ ∈ A := {θ ∈ [−π, π ] : ĞB(e
jθ ) 6= 0}

and τ ∈ [0, h). For θ ∈ [−π, π ]\A, we can take F̆n,opt = 0. If this interpolator

Fn,opt is well-defined and stable, then it minimizes ‖GA − FGB‖L∞ over all in-

terpolators F with rank F̀ ≤ r at each θ ∈ [−π, π ]. The optimal norm is given

by

‖GA − Fn,optGB‖L∞ = ess sup
θ∈[−π,π ]

‖ĞA − F̀n,optĞB‖ (4.55)
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where

‖ĞA − F̀n,optĞB‖ = max
i /∈Dr (S)

i∈M

(

|Gvmax,i |, ‖ĞA(I − P̆B)‖
)

.

Here ‖ · ‖ is the induced 2-norm.

Proof. Proof follows from Theorem 4.10.7.

The quantity ess supθ∈[−π,π ] ‖ĞA(I − P̆B)‖ is known as the Parrott lower

bound in the presence of noise.

Remark 4.11.11. In order to write the optimal interpolator F̀n,opt (defined in

(4.54)) as a cascade of a stable downsampler Śh,opt and hold H̀opt, we can use the

same technique adopted in Theorem 4.9.9. Define Śh,opt(e
jθ ) and hold H̀opt(e

jθ )

with kernels given in (4.51) using the set S defined in Theorem 4.11.10. If the

downsampler S̄h,opt and hold Hopt are well-defined and stable, then they minimize

‖GA − HS̄hGB‖L∞ over all downsamplers and holds. Note that if the optimal

downsampler S̄h,opt and hold Hopt are well-defined then interpolator F̀n,opt given

by (4.54) is a hybrid interpolator by definition.

Intuitively, noise should increase the Parrott lower bound as well as the recon-

struction error, which can be seen analytically as follows.

Lemma 4.11.12. Let Ğv and Śy, P̆ be as in Theorem 4.10.11. Then,

1. ‖GA − Fn,optGB‖L∞ ≥ ‖Gv − FoptSy‖L∞

2. ess sup
θ∈[−π,π ]

‖ĞA(I − P̆B)‖ ≥ ess sup
θ∈[−π,π ]

‖Ğv(I − P̆)‖

where Fopt is the optimal interpolator in the noise-free case defined in Theorem

4.10.11 and Fn,opt is the optimal interpolator in the noise case defined in Theorem

4.11.10.

Proof. See Appendix 4.D (page 114).

Similar to Section 4.10.2, if Gv(jω) has finite support then calculation of the

Parrott lower bound in the presence of noise can be done using matrices. The

matrix associated with the operator ĞA(I − P̆B), which maps from L2[0, h)×CM

to L2[0, h), with respect to the orthonormal bases

{

{
[

ĕi

0

]

}i∈N, {
[

0

Eek

]

}k∈M

}

and

{ĕk} is the matrix
[

[bkl ]k∈Z,l∈M [akl ]k,l∈Z]
]

where (see [69, §7.6])

bkl :=
〈

ĞA(I − P̆B)

[

0

Eel

]

, ĕk

〉

and akl :=
〈

ĞA(I − P̆B)

[

ĕl

0

]

, ĕk

〉

.

This equal to

bkl =







−
√

MḠn(e
jωl h′

)Gv(jωk)ψ
∗
y(jωk)√

hµ2
l

rem(k,M) = l

0 rem(k,M) 6= l

(4.56a)
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akl =







Gv(jωk)

(

δ̄kl − ψ∗
y(jωk)ψy(jωl )
h
M µ

2
rem(k,M)

)

rem(k − l,M) = 0

0 rem(k − l,M) 6= 0

(4.56b)

where δ̄kl = δ̄[k − l] and rem(k,M) is defined in (4.42).

Although, the Parrott lower bound may increase in the presence of noise, it

does not mean that the reconstruction error has to increase. There are cases where

the noise does not increase the reconstruction error at all. This happens if the

Parrott lower bound in the presence of noise is smaller than or equal to

ess sup
θ∈[−π,π ]

max
i /∈Dr (S)

i∈M

|Gvmax,i |.

This is contrary to the L2 case where non-zero noise will always increase the error

norm as seen in the following example.

Example 4.11.13. Consider Example 4.10.13 but here we determine an L∞ opti-

mal downsampling solution in the presence of noise. Also, we assume that Ḡn is

the identity. Similar to Example 4.10.13, we find that D1(S) = {0} in this example

also. If r = 1 then an L∞ optimal interpolator (4.54) in lifted frequency domain

is given by,

F̆n,optx =







(

1
2

ejω0τ + 1
4
ejω2τ

) 〈

x, 1
2
ejω0mh′〉

θ ∈ [−π, 0]
(

1
2

ejω0τ + 1
4
ejω−2τ

) 〈

x, 1
2
ejω0mh′〉

θ ∈ [0, π ]

Using (4.15) and the inverse lifted transform, we can write the discrete sampling

function χ̄opt[n] and hold function φopt(t) of the optimal downsampler and hold as

χ̄n,opt[n] = 1

2
sinc(

n

2
)

φn,opt(t) = 1

2
sinc(t)+ 1

8
cos(

7π t

2
) sinc(

t

2
).

See Figure 4.15 (page 100). Since the optimal downsampler and hold are well-

defined, Fopt is an order-1 hybrid interpolator. Also, since sinc[n] ∈ ℓ2, sinc(t) ∈
L2 and | cos(t)| is bounded, it follows from lemma’s 2.4.7 and 4.6.2 that the opti-

mal downsampler and hold are stable (i.e. in L∞). Since Gv(jω) has finite support,

we can obtain an equivalent finite dimensional matrix representation of the oper-

ator ĞA(I − P̆B) for norm calculation (see (4.56)). This yields,

‖ĞA(I − P̆B)‖ = 0.95 ∀θ ∈ [−π, π ]

Hence the Parrott lower bound in the presence of noise is ess supθ∈[−π,π ] ‖ĞA(I −
P̆B)‖ = 0.95. Also,

‖GA − FoptGB‖L∞ = ess sup
θ∈[−π,π ]

(0.95, ‖ĞA(I − P̆B)‖) = 0.95.
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χ̄opt[n]0.5

0

φopt(t)

5
8

0

Figure 4.15: Discrete sampling function χ̄opt[n] of the L∞ opti-

mal downsampler and Hold function φopt(t) of the L∞ optimal hold

(right) in the presence of noise. The left figure also shows 1
2

sinc( t
2
)

(dotted).

Although ĞA(I − P̆B) in this example does not equal to the ĞN of Example 4.10.13,

but ‖GA − FoptGB‖L∞ is equal to ‖Gv − FoptSy‖L∞ . So in this example, the unit

power noise does not increase the reconstruction error.

4.12 Concluding Remarks

This chapter describes the optimal non-causal solution of the downsampling prob-

lem of minimizing ‖Gv − HS̄hSh′Gy‖L2 and ‖Gv − HS̄hSh′Gy‖L∞ over all stable

holds (with input dimension r) and downsamplers (with output dimension r). The

result is generic in the sense that the spectrum of input signals need not be ban-

dlimited. Obtaining the optimal downsampler becomes more intricate because of

aliased frequencies. Although the solution is provided for LCTI Gv, by proceeding

in similar manner, the downsampling problem can be solved for any linear h-time

shift invariant system Gv, using Theorem 4.9.2 and Theorem 4.10.7. The effect of

noise is also studied in this chapter. As expected noise increases the reconstruction

error L2, but it is not necessary that noise increases the L∞ reconstruction error

norm.

4.A Proofs of the results in sections 4.5, 4.7 and 4.8

Proof of Theorem 4.5.4. Assume that the classic z-transform f̄ (z) of f̄ is given.

The z-transform (4.5) is defined for a lifted signal spaced at interval h whereas

the discrete signal f̄ (n) is spaced at interval h′ = h/M . Therefore, we need a

fractional z-transform, in other words z
1
M -transform. But for any z = |z|ej Arg z ∈
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C where Arg is the principle argument function [48, Chapter 3], the z
1
M not unique

and has M roots given by z
1
M = |z| 1

M ej
Arg z

M e
j2π i

M for all i ∈ M. We denote the roots

as z̃i = |z| 1
M ej

Arg z
M e

j2π i
M . The classic z-transform of f [n] at z̃i now becomes

f̄ (z̃i ) =
∑

n∈Z

f̄ [n]z̃−n
i =

∑

k∈Z

M−1
∑

m=0

f̄ [Mk + m]z̃
−(Mk+m)
i

=
M−1
∑

m=0

z̃−m
i

∑

k∈Z

f̄ [Mk + m]z̃−Mk
i

=
M−1
∑

m=0

z̃−m
i

∑

k∈Z

f̄ [Mk + m]z−k

=
M−1
∑

m=0

Ef (z; m)|z|− 1
M

me−j
Arg z

M
me− j2π i

M
m

Define s0 := 1
M
(log(|z|) + j Arg z), then es0 = |z| 1

M ej
Arg z

M = z̃i e
− j2π i

M and es0 M =
|z|ej Arg z = z. This implies

1

M
f̄ (z̃i ) = 1

M

M−1
∑

m=0

(

Ef (z; m)e−s0m
)

e−j 2π i
M

m

Since Ef (z; m)e−s0m is a periodic discrete signal as a function of m with period M .

Hence, 1
M

f̄ (z̃i ) is i th discrete Fourier series coefficient of sequence Ef (z; m)e−s0m

in m. Therefore,

Ef (z; m)e−s0m = 1

M

M−1
∑

i=0

f̄ (z̃i )e
j 2πm

M
i

Ef (z; m) = 1

M

M−1
∑

i=0

f̄ (z̃i )z̃
m
i

Conversely, assume that the discrete lifted z-transform Ef (z) of f̄ is given.

Then,

M−1
∑

m=0

Ef (z̃M ; m)z̃−m =
M−1
∑

m=0

z̃−m
∑

k∈Z

f̄ [Mk + m]z̃−Mk

=
∑

k∈Z

M−1
∑

m=0

f̄ [Mk + m]z̃−(Mk+m) =
∑

n∈Z

f̄ [n]z̃−n

= f̄ (z̃)
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Proof of (4.11). Consider the z-transform of the output of the lifted downsampler

(4.3):

ȳ(z) =
∑

n∈Z

ȳhz−n =
∑

n∈Z

∑

i∈Z

Śh[n − i]Eyh′ [i]z−n

=
∑

i∈Z

(

∑

n∈Z

Śh[n − i]z−(n−i)

)

Eyh′ [i]z−i

=
(

∑

n∈Z

Śh[n]z−n

)

∑

i∈Z

Eyh′ [i]z−i

= Śh(z)Eyh′(z)

Now it follows from (4.3) that

ȳ(z) =
∑

m∈M

(

∑

k∈Z

Eχ[k; −m]z−k

)

Eyh′(z; m)

=
∑

m∈M

Eχ(z; −m)Eyh′(z; m).

By the above equation, the transfer function Śh(z) is an operator whose kernel is

given by Eχ(z,−m).

Proof of Theorem 4.7.2. Given that the output ȳh of the downsampler has r rows.

Therefore at each θ ∈ [−π, π ], we have ȳh(e
jθ ) ∈ Cr . In addition to the above,

we have

ŭ(ejθ ; τ ) = F̀(ejθ ) ȳh(e
jθ ) = φ̆(ejθ ; τ ) ȳh(e

jθ )

Therefore, dim(Im F̀(ejθ )) ≤ dim(Im Śh(e
jθ )) ≤ r at almost every θ ∈ [−π, π ].

Hence rank(F̀) ≤ r .

Proof of Lemma 4.8.2. In the proof we drop (ejθ ) from all signals or systems un-

less necessary. Part 1: Trivial.

Part 2: Since ψy(jω) = ψ(jω)Gy(jω) and Gy ∈ L2, we have

∫ ∞

−∞
|ψy(jω)|2 dω ≤ ‖ψ‖L∞‖Gy‖L2(T) < ∞,

where ‖ψ‖L∞ := ess supω∈R |ψ(jω)|. This implies ψy ∈ L2 by Parseval’s theo-

rem.

Part 3: Similar to the derivation of (4.12), the system Eyh′ = Śyw̆ equals

Eyh′(ejθ ; m) =
∫ h

0

ψ̆y(e
jθ ; mh′ − τ ) w̆(τ ) dτ
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where m ∈ {0, · · · ,M − 1}. Using the Key lifting formula (2.18), we have

ψy(e
jθ ; mh′ − τ ) =

∑

k

ψy(jωk)e
jωk(mh′−τ ).

Therefore Eyh′ can be written as

Eyh′(ejθ ; m) = 1

h

∑

k

ψy(jωk)

(∫ h

0

w̆(τ )e−jωkτ dτ

)

ejωkmh′

= 1√
h

∑

k

ψy(jωk) 〈w̆, ĕk〉 ejωkmh′

=
√

M

h

∑

k∈Z

ψy(jωk) 〈w̆, ĕk〉 Eek (4.57)

Note that, for any given θ , the {Eek}k∈M forms an orthonormal basis in CM and that

Eek = Eek+Mi ∀i ∈ Z (see Remark 4.5.6). So, the infinite sum in (4.57) equals a

finite sum:

Eyh′ =
√

M

h

∑

k∈Z

ψy(jωk) 〈w̆, ĕk〉 Eek

=
√

M

h

M−1
∑

k=0

∑

i∈Z

ψy(jωk+Mi ) 〈w̆, ĕk+Mi 〉 Eek+Mi

=
√

M

h

M−1
∑

k=0

αk

〈

w̆,
∑

i∈Z

ψ∗
y(jωk+Mi )

αk

ĕk+Mi

〉

Eek

=
√

M

h

M−1
∑

k=0

αk 〈w̆, p̆k〉 Eek (4.58)

Since ψy ∈ L2, we have αk < ∞ for almost all θ , this again implies p̆k ∈ L2[0, h)

for almost all θ . Note that still, we have for almost all θ that 〈 p̆i , p̆k〉 = δ̄[i − k].

Part 4: Follows from Lemma 2.4.7.

Proof of Theorem 4.8.4. In Problem P2, we need F ∈ L∞. By Lemma 2.4.4 this

means implies a bounded F̀ at almost all θ .

Now, the L2 norm of the error system is given by

‖Gv − FSy‖2

L2 = 1

2πh

∫ π

−π
‖Ğv(e

jθ )− F̀(ejθ )Śy(e
jθ )‖2

H S dθ

Since, ‖Ğv(e
jθ ) − F̀(ejθ )Śy(e

jθ )‖H S ≥ 0, therefore minimizing at each θ with

constraint of rank(F̀(ejθ )) ≤ r , defines F̀opt for all θ .
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The L∞ norm of the error system is given by

‖Gv − FSy‖L∞ = ess sup
θ∈[−π,π ]

‖Ğv(e
jθ )− F̀(ejθ )Śy(e

jθ )‖∞

Lets us assume γopt := minF ‖Gv − FSy‖L∞ obtained by a F1 such that F1 6=
Fopt and ess supθ∈[−π,π ] rank(F̀1(e

jθ )) ≤ r . But it follows from definition of F̀opt

that ‖Ğv(e
jθ )− F̀1(e

jθ )Śy(e
jθ )‖∞ ≥ ‖Ğv(e

jθ )− F̀opt(e
jθ )Śy(e

jθ )‖∞ at almost all

θ ∈ [−π, π ], therefore

ess sup
θ∈[−π,π ]

‖Ğv(e
jθ )− F̀1(e

jθ )Śy(e
jθ )‖∞

≥ ess sup
θ∈[−π,π ]

‖Ğv(e
jθ )− F̀opt(e

jθ )Śy(e
jθ )‖∞

⇒‖Gv − F1Sy‖L∞ ≥ ‖Gv − FoptSy‖L∞

But we assumed F1 is optimal, this means ‖Gv − F1Sy‖L∞ ≤ ‖Gv − FoptSy‖L∞ .

Therefore, ‖Gv −F1Sy‖L∞ = ‖Gv −FoptSy‖L∞ . This implies Fopt is also optimal.

4.B Proofs of the results in Section 4.9

Proof of Lemma 4.9.1. Let {b0, b1, · · · } be an orthonormal basis of Ker B. Also,

let {b⊥
0 , b⊥

1 , · · · } be an orthonormal basis of (Ker B)⊥. For all i ∈ N, we have

Bbi = 0 and Pbi = 0 (as bi ∈ Ker B) and A(I − P)b⊥
i = 0 (as b⊥

i ∈ (Ker B)⊥).
Since {b0, b1, · · · } ∪ {b⊥

0 , b⊥
1 , · · · } forms an orthonormal basis of H, we have

‖A − F B‖2
H S =

∑

i

‖(A − F B)bi‖2 +
∑

i

‖(A − F B)b⊥
i ‖2

=
∑

i

‖AN bi‖2 +
∑

i

‖(AP − F B)b⊥
i ‖2

= ‖AN ‖2
H S + ‖AP − F B‖2

H S

Finally, since A and B are Hilbert-Schmidt operators, therefore A(I − P), AP −
F B and A−F B are Hilbert-Schmidt operators (this can be proved easily using [47,

Thm 6.16]).

Proof of Theorem 4.9.2. Since A is compact (as A is Hilbert-Schmidt), AP is also

compact, therefore SVD of AP exists [69]. Now, first it will be shown that the Fopt

given in (4.21a) is a bounded operator iff W ⊆ Im B∗ ⊕ (Im B∗)⊥. Two situations

arise here: Im B is closed or not closed.

• Suppose Im B is closed.

Since Im B is closed, a bounded B+ : H1 → (Ker B)⊥ exists and B+B =
P [13, Proposition 2.3]. Boundedness of the operator Fopt follows from [47,

Exercise 6.11] and the fact that B+x ∈ H for all x ∈ H1.
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• Suppose Im B is not closed.

Note that B is a closed and dense operator because it is a bounded operator

on the domain H1. Since Im B is not closed, the pseudo-inverse B+ exists

but on domain D(B+) = Im B ⊕ (Im B)⊥ [13, Definition 2.2]. This makes

B+ a dense operator, hence this proves the existence of (B+)∗. Also, Im B

is not closed, implies Im B∗ is not closed [67, §7.5], therefore (B∗)+ has

domain D((B∗)+) = Im B∗ ⊕ (Im B∗)⊥.

Although B+ is unbounded for domain H1, the boundedness of Fopt de-

pends upon ei as shown below. Using (B+)∗ = (B∗)+ [21, thm 9.3.2], for

any x ∈ H1 we have

Foptx =
r−1
∑

i=0

σi

〈

x, (B+)∗ei

〉

fi =
r−1
∑

i=0

σi

〈

x, (B∗)+ei

〉

fi .

Now, if for all i ∈ {0, · · · , r−1}, ei ∈ Im B∗⊕(Im B∗)⊥, then ‖(B∗)+ei‖ <
∞ because the domain of (B∗)+ is Im B∗ ⊕ (Im B∗)⊥. Hence, by the

Pythagoras theorem and the Cauchy-Schwartz inequality

‖Foptx‖2

‖x‖2
= 1

‖x‖2

r−1
∑

i=0

σ 2
i |
〈

x, (B∗)+ei

〉

|2

≤
r−1
∑

i=0

σ 2
i ‖(B∗)+ei‖2 < ∞

Hence, Fopt is a bounded operator on domain H1.

Now, let us assume Fopt is a bounded operator on domain H1 but en /∈
Im B∗ ⊕ (Im B∗)⊥ for some n ∈ {0, · · · , r − 1}. Let gn(x) :=

〈

x, (B∗)+en

〉

for all x ∈ H1. Since σi 6= 0 and gi (x) = 1
σi

〈

Foptx, fi

〉

, we have using

Cauchy-Schwartz

|gi (x)| ≤ 1

σi

‖Foptx‖ ≤ 1

σi

‖Fopt‖‖x‖.

Now, boundedness of Fopt implies
|gi (x)|
‖x‖ ≤ 1

σi
‖Fopt‖ < ∞ ∀i ∈ [0, r − 1].

Hence gn : H1 → C is a bounded functional in the dual space of H1.

According to the Reisz-Frechet theorem [47, thm 4.31], this is only possible

when (B∗)+en is defined and belongs to H1. This implies en ∈ Im B∗ ⊕
(Im B∗)⊥, which is a contradiction. It means when en /∈ Im B∗ ⊕ (Im B∗)⊥

for some n ∈ {0, · · · , r − 1} then Fopt is not a bounded operator on domain

H1.

Now it can be shown that Fopt is optimal also. For any x ∈ H, we have

Fopt Bx =
r−1
∑

i=0

σi

〈

B+Bx, ei

〉

fi =
r−1
∑

i=0

σi 〈Px, ei 〉 fi
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=
r−1
∑

i=0

σi 〈x, Pei 〉 fi =
r−1
∑

i=0

σi 〈x, ei 〉 fi (4.59)

which is the best rank-r approximation of AP . Clearly if r = rank AP , then AP −
F B = 0. Finally, the rank-r minimizing solution of problem minF ‖AP − F B‖H S

is also the solution of the problem minF ‖A − F B‖H S (see (4.19)).

Since,

Foptx =
r−1
∑

i=0

σi

〈

B+x, Qei

〉

fi =
r−1
∑

i=0

σi

〈

Q B+x, ei

〉

fi (4.60)

Note that

Q B+x =
r−1
∑

i=0

〈

B+x, ei

〉

ei x ∈ H1

Now, the proof of boundedness of the operator Q B+ is similar to the proof of

boundedness of the operator Fopt.

Proof of Corollary 4.9.4. The rank-r minimizing solution of problem minF ‖A −
F B‖H S is also the solution of the problem minF ‖AP − F B‖H S (see (4.19)).

Using (4.23) and (4.24), for any x ∈ H, we have

Fopt Bx =
r−1
∑

i=0

σi

〈

x, gn(i)

〉

fi =
r−1
∑

i=0

σi 〈x, ei 〉 fi

which is the best rank-r approximation of AP . Since βi 6= 0, Fopt is a bounded

operator.

Proof of Corollary 4.9.5. Using an SVD of AP given in (4.20) and SVD of Fopt B

given in (4.59), we get

‖AP − Fopt B‖2
H S =

∑

i≥r

σ 2
i =

∑

i∈NAP

σ 2
i −

r−1
∑

i=0

σ 2
i

= ‖AP‖2
H S − ‖Fopt B‖2

H S

for any r < rank AP . Also, we have ‖A‖2
H S = ‖AN ‖2

H S + ‖AP‖2
H S which

follows from (4.19) when we take F = 0. Again from (4.19),

‖A − Fopt B‖2
H S = ‖AN ‖2

H S + ‖AP − Fopt B‖2
H S

= ‖AN ‖2
H S + ‖AP‖2

H S − ‖Fopt B‖2
H S

= ‖A‖2
H S − ‖Fopt B‖2

H S
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Proof of Lemma 4.9.6. An SVD (modulo ordering) of the operator Ğv mapping

L2[0, h) to L2[0, h), at almost all θ is given by (see [31]).

Ğvw̆ =
∑

i∈Z

Gv(jωi ) 〈w̆, ĕi 〉 ĕi

Using (4.25), for any w̆ ∈ L2[0, h) we have

Ğv P̆w̆ =
∑

i∈Z

Gv(jωi )
〈

P̆w̆, ĕi

〉

ĕi

=
∑

i∈Z

Gv(jωi )
〈

w̆, P̆ĕi

〉

ĕi

=
∑

i∈Z

Gv(jωi )

〈

w̆,
∑

k∈M,αk 6=0

〈ĕi , p̆k〉 p̆k

〉

ĕi

=
∑

i∈Z

M−1
∑

n=0

Gv(jωn+Mi )

〈

w̆,
∑

k∈M,αk 6=0

〈ĕn+Mi , p̆k〉 p̆k

〉

ĕn+Mi

=
∑

i∈Z

∑

n∈M,αn 6=0

Gv(jωn+Mi ) 〈ĕn+Mi , p̆n〉∗ 〈w̆, p̆n〉 ĕn+Mi

Since 〈ĕn+Mi , p̆n〉∗ = ψ∗
y(jωn+Mi )

αn
, we have

Ğv P̆w̆ =
∑

i∈Z

∑

n∈M,αn 6=0

Gv(jωn+Mi )ψ
∗
y(jωn+Mi )

αn

〈w̆, p̆n〉 ĕn+Mi

=
∑

n∈M,αn 6=0

〈w̆, p̆n〉
∑

i∈Z

Gv(jωn+Mi )ψ
∗
y(jωn+Mi )

αn

ĕn+Mi

=
∑

n∈M,αn 6=0

σn 〈w̆, p̆n〉 q̆n (4.61)

Since ψy(t) ∈ L2 and Gv ∈ L2, we have αk, σn < ∞ for almost all θ , this

again implies q̆n ∈ L2[0, h) for almost all θ . Note that still, for almost all θ

〈q̆i , q̆k〉 = δ̄[i − k].

4.C Proofs of the results in Section 4.10

Throughout this section, we will use

AN := A(I − P), Tγ := I − γ−2 AN A∗
N ∀γ ∈ (‖AN ‖,∞),

and ‖ · ‖ means the induced 2-norm of the operator.
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Proof of Lemma 4.10.2. Since (I − P)P = P(I − P) = 0, we have AN (AP −
F B)∗ = A(I − P)((AP − F B)P)∗ = A(I − P)P(AP − F B)∗ = 0 and (AP −
F B)A∗

N = (AN (AP − F B)∗)∗ = 0. Therefore

‖A−F B‖ ≤ γ ⇔ (A − F B)(A − F B)∗ ≤ γ 2 I

⇔ (AN + AP − F B)(AN + AP − F B)∗ ≤ γ 2 I

⇔ AN A∗
N + (AP − F B)(AP − F B)∗ ≤ γ 2 I

Since operator AN A∗
N and (AP − F B)(AP − F B)∗ are positive, we have

‖A − F B‖ ≤ γ ⇔ (AP − F B)(AP − F B)∗ ≤ γ 2Tγ

Here operator Tγ is positive (as ‖AN ‖ < γ ), therefore T
1
2
γ exists [47, Theorem

5.58]. Given γ 2 > ‖AN ‖2 = ‖AN A∗
N ‖, then the operator Tγ is invertible [47,

Theorem 4.40], which again implies T
1
2
γ is invertible. Now,

‖A − F B‖ ≤ γ

⇔ T
− 1

2
γ (AP − F B)(T

− 1
2

γ (AP − F B))∗ ≤ γ 2 I

⇔ ‖T
− 1

2
γ (AP − F B)‖ ≤ γ

Proof of Lemma 4.10.5. By Corollary 4.10.4 for a given i , the space Vi is invari-

ant under operator AA∗, hence Pi AA∗ Pi = AA∗ Pi . Also, Vi is invariant under

operator AP(AP)∗ because if x ∈ Vi , then

AP(AP)∗x =
∑

n∈NAP

σ 2
n 〈x, fn〉 fn =

∑

n∈NAP

σ 2
n 〈Pi x, fn〉 fn

=
∑

n∈NAP

σ 2
n 〈x, Pi fn〉 fn = σ 2

i 〈x, fi 〉 fi

where last equation follows from the Assumption A1 which says fi ⊥ V j for

all j 6= i . Since the space Vi is invariant under operator AA∗ and AP(AP)∗,

this implies it is invariant under operator AN A∗
N = AA∗ − AP(AP)∗. Hence,

if γ > ‖AN ‖, then Vi is invariant under operator Tγ and T −1
γ (using Neumann

series).

Note that (AP)∗T
− 1

2
γ AP is a compact operator as AP is compact operator [47,

Theorem 6.3]. Hence an SVD of the operator (AP)∗T
− 1

2
γ AP exists [69, Eqn.

16.1]. First it will be shown that the eigenvectors of the operator (AP)∗T −1
γ AP

are in the set {ei }i∈NAP
. To prove this, let us define yi := T −1

γ fi where yi ∈ Vi (as

Vi is invariant under T −1
γ ). Now considering,

T −1
γ APei = σi T −1

γ fi = σi yi = σi (〈yi , fi 〉 fi + f ⊥
i )
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where f ⊥
i ⊥ fi . Since yi and fi belong to Vi , f ⊥

i ∈ Vi . This implies f ⊥
i ⊥ f j

also for any j 6= i , as f j ∈ V⊥
i . This means,

(AP)∗T −1
γ APei = σ 2

i 〈yi , fi 〉 ei

This implies ei is an eigenvector of the operator (AP)∗T −1
γ AP . Now it can proved

by contradiction that the eigenvectors of (AP)∗T −1
γ AP with non-zero eigenvalues

are in the set {ei }i∈NAP
. Suppose there exist an eigenvector ê /∈ span{ei }i∈NAP

of

(AP)∗T −1
γ AP with non-zero eigenvalue. This implies ê ∈ Im(AP)∗T −1

γ AP) =
(Ker(AP)∗T −1

γ AP)⊥ as (AP)∗T −1
γ AP is self-adjoint (Im means closure of im-

age) [47, Equation 6.8]). However,

(Ker(AP)∗T −1
γ AP)⊥ ⊆ (Ker AP)⊥ = span{ei }i∈NAP

as Ker AP ⊆ Ker((AP)∗T −1
γ AP). This implies ê ∈ span{ei }i∈NAP

, which is a

contradiction.

Now as shown above the eigenvalues of the operator (AP)∗T −1
γ AP are given

by σ 2
i 〈yi , fi 〉 for all i ∈ NAP , but in terms of still unknown yi . The rest of proof

shows how to obtain yi for all i ∈ NAP , hence the eigenvalues of the operator

(AP)∗T −1
γ AP .

Since the set {vin}n∈NPi A
forms an orthonormal basis of the space Vi and

fi , yi ∈ Vi , we can expand fi and yi as

fi =
∑

n

cinvin, yi =
∑

n

binvin

where cin := 〈 fi , vin〉 and bin := 〈yi , vin〉. Note that cin 6= 0 by the definition of

Vi . Note that cn 6= 0 as 〈vin, fi 〉 6= 0 (see Lemma 4.10.3).

Now,

fi = Tγ yi = (I − γ−2 AN A∗
N )Pi yi

=
(

I − γ−2 AA∗ Pi + γ−2 AP(AP)∗ Pi

)

yi

= yi − γ−2
∑

n

α2
in 〈yi , vin〉 vin + γ−2σ 2

i 〈yi , fi 〉 fi (4.62)

It will now shown that yi = βi

∑

k cikζikvik satisfy (4.62) where ζik = (1 −
γ−2α2

ik)
−1 and βi = (1 + γ−2σ 2

i

∑

n |cin|2ζin)
−1. From (4.62), we have

Tγ yi =
(

yi − γ−2
∑

n

α2
in 〈yi , vin〉 vin

)

+ γ−2σ 2
i 〈yi , fi 〉 fi

=
(

βi

∑

n

cinζinvin − γ−2
∑

n

α2
inβi cinζinvin

)

+ γ−2σ 2
i 〈yi , fi 〉 fi

=
(

βi

∑

n

cinζin(1 − γ−2α2
in)vin

)

+ γ−2σ 2
i 〈yi , fi 〉 fi
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= βi

∑

n

cinvin + βiγ
−2σ 2

i

(

∑

k

|cik |2ζik

)

fi

= βi fi + βiγ
−2σ 2

i

(

∑

k

|cik |2ζik

)

fi

= βi

(

1 + γ−2σ 2
i

∑

k

|cik |2ζik

)

fi = fi

This shows yi = βi

∑

k cikζikvik satisfy (4.62). Hence 〈yi , fi 〉 = βi

∑

n |cin|2ζin .

Therefore η2
i (γ ) = σ 2

i 〈yi , fi 〉 = σ 2
i βi

∑

n |cin|2ζin . Since for γ > ‖AN ‖, Tγ

is a positive operator and invertible, (AP)∗T −1
γ AP is also a positive operator, this

implies eigenvalues of (AP)∗T −1
γ AP belongs to [0,∞).

Proof of Lemma 4.10.6. First we calculate γF := ‖A − F B‖ for all F ∈ F. We

define iF := arg maxi {αi0}i /∈C. The first eigen vector of PiF
AA∗ PiF

is given by

viF 0. Since iF /∈ C, by Assumption A1, viF 0 ⊥ ⊕

i∈CVi and { fi }i∈C ∈ ⊕i∈CVi ,

therefore

〈

fi , viF 0

〉

= 0 ∀i ∈ C

⇒(F B)∗viF 0 =
∑

i∈C

σi

〈

viF 0, fi

〉

ei = 0

⇒‖(A − F B)∗viF 0‖ = ‖A∗ PiF
viF 0‖ = αiF 0

⇒‖(A − F B)∗‖ ≥ αiF 0 ⇒ ‖(A − F B)‖ ≥ αiF 0

This means γF ≥ αiF 0.

If αiF 0 > ‖AN ‖, then the singular values of the operator T
− 1

2
αiF 0

(AP − F B) are

given by the set {ηi (αiF 0)} i /∈C
i∈NAP

as AP − F B = ∑

i /∈Cσi 〈x, ei 〉 fi . For a given

i /∈ C, we have αiF 0 ≥ {αi0} ≥ {αik}k∈NPi A
, hence

1

σ 2
i

∑

k
|〈 fi ,vik 〉|2
α2

iF 0−α2
ik

≥ 0, ∀i /∈ C&k ∈ NPi A

⇒






1 + 1

σ 2
i

∑

k
|〈 fi ,vik〉|2
α2

iF 0−α2
ik







−1

≤ 1, ∀i /∈ C&k ∈ NPi A

⇒






α−2

iF 0 + 1

σ 2
i

∑

k
|〈 fi ,vik〉|2
1−α−2

iF 0α
2
ik







−1

≤ α2
iF 0, ∀i /∈ C&k ∈ NPi A

⇒ ηi (αiF 0) ≤ αiF 0, ∀i /∈ C
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Here, we used the assumption that
〈

fi , viF k

〉

6= 0 which follows from the construc-

tion of Vi in (4.32). The above inequality implies all singular value of T
− 1

2
αiF 0

(AP −
F B) are less than or equal to αiF 0, hence ‖T

− 1
2

αiF 0
(AP − F B)‖ ≤ αiF 0 if αiF 0 >

‖AN ‖. Now, if αiF 0 > ‖AN ‖, then by Lemma 4.10.2

‖T
− 1

2
αiF 0

(AP − F B)‖ ≤ αiF 0 ⇒ ‖A − F B‖ ≤ αiF 0

Therefore we can say that if αiF 0 > ‖AN ‖, then ‖A − F B‖ = αiF 0.

If αiF 0 ≤ ‖AN ‖, choose any γǫ := ‖AN ‖+ǫ , where ǫ > 0. For a given i /∈ C,

we have γǫ > αiF 0 ≥ {αi0} ≥ {αik}k∈NPi A
. Similar to αiF 0 > ‖AN ‖ case we can

show that,

ηi (γǫ) ≤ γǫ ∀i /∈ C

Therefore, by Lemma 4.10.2

‖T
− 1

2
γǫ (AP − F B)‖ ≤ γǫ ⇒ ‖A − F B‖ ≤ γǫ

Since ‖A − F B‖ ≥ ‖AN ‖, letting ǫ → 0, we can say that ‖A − F B‖ = ‖AN ‖.

Combining all of the above, we can say that

γF = ‖A − F B‖ = max(αiF 0, ‖AN ‖)
Note that if F 6= F0, then iF ∈ Dr (S). But if F = F0, then iF = i0 /∈ Dr (S)

where i0 := arg maxi {αi0}i /∈Dr (S). Now it follows from definition of Dr (S) that

max(αi00, ‖AN ‖) ≤ max(αiF 0, ‖AN ‖) ∀F ∈ F

Hence,

‖A − F0 B‖ ≤ ‖A − F B‖ ∀F ∈ F

Proof of Theorem 4.10.7. Lets define γF := ‖A − F B‖, γopt := minF∈Fr
‖A −

F B‖ and Fopt := arg minF∈Fr
‖A − F B‖ where Fr denote the space of bounded

operators of rank r .

Notice that if span{ei }i∈Dr (S) ⊆ Im B∗ ⊕ (Im B∗)⊥, F0 is bounded (See The-

orem 4.9.2 for the proof), so F0 ∈ Fr also.

First we show that the rank-r approximation of T
− 1

2
γ AP for any γ > ‖AN ‖

belongs to the set F (defined in Lemma 4.10.6). By Lemma 4.10.5, if γ > ‖AN ‖
then the SVD of T

− 1
2

γ AP exist with singular values ηi (γ ) and right singular vec-

tors ei for all i ∈ NAP . Therefore, if γ > ‖AN ‖, then T
− 1

2
γ AP has a SVD of the

form

T
− 1

2
γ APx =

∑

i∈NAP

ηmi
(γ )

〈

x, emi

〉

zi x ∈ H, zi ∈ H0
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where mi gives the re-ordering of in the summation such that the set {ηmi
(γ )}i∈Z

is in descending order. This implies

T
− 1

2
γ APemi

= T
− 1

2
γ σmi

fmi
= ηmi

(γ )zi

Now let us define an F ∈ F with C = {mi }i={0,··· ,r−1}. Then,

T
− 1

2
γ F Bx =

∑

k∈C

σk

〈

B+Bx, ek

〉

T
− 1

2
γ fk x ∈ H

=
r−1
∑

i=0

〈

x, emi

〉

ηmi
(γ )zi ,

which is indeed optimal rank-r approximation of T
− 1

2
γ AP for any γ > ‖AN ‖.

This shows that rank-r optimal approximation of T
− 1

2
γ AP for any γ > ‖AN ‖

must belong to the set F.

Now let us consider the case γopt = ‖AN ‖. We will show that in this case

‖A − F0 B‖ = ‖AN ‖, hence we can take Fopt = F0. Assume that γ0 := ‖A −
F0 B‖ > ‖AN ‖. By Lemma 4.10.2, for any γ ∈ (‖AN ‖, γ0) we have

γopt = ‖A − Fopt B‖ ≤ γ ⇒ ‖T
− 1

2
γ (AP − Fopt B)‖ ≤ γ.

This implies, for some F ∈ F, ‖T
− 1

2
γ (AP − F B)‖ ≤ ‖T

− 1
2

γ (AP − Fopt B)‖ ≤ γ

(due to an SVD of T
− 1

2
γ AP). This means for same F ∈ F,

‖T
− 1

2
γ (AP − F B)‖ ≤ γ ⇒ ‖A − F B‖ ≤ γ

⇒ ‖A − F B‖ < γ0.

But since γF ≥ γ0 for any F ∈ F (see Lemma 4.10.6), this leads to a contradiction.

This implies γ0 6> ‖AN ‖ i.e. γ0 = ‖AN ‖. Since F0 attains ‖AN ‖ (the lower bound

for ‖A − F B‖ for all F ∈ Fr ), therefore γopt = γ0 and we can select Fopt = F0.

Now let us consider the case when γopt > ‖AN ‖. By Lemma 4.10.2, we have

‖A − Fopt B‖ ≤ γopt ⇒ ‖T
− 1

2
γopt (AP − Fopt B)‖ ≤ γopt.

This implies, for some F ∈ F, ‖T
− 1

2
γopt (AP − F B)‖ ≤ ‖T

− 1
2

γopt (AP − Fopt B)‖ ≤ γopt

(due to an SVD of T
− 1

2
γopt AP). This means for same F ∈ F,

‖T
− 1

2
γopt (AP − F B)‖ ≤ γopt ⇒ ‖A − F B‖ ≤ γopt.

This means γF ≤ γopt but by definition γopt ≤ γF for same F ∈ F. This implies

γF = γopt > ‖AN ‖ for same F ∈ F. Since we know that γ0 ≤ γF for all F ∈ F,

therefore γ0 = γopt and we can select Fopt = F0.
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4.D Proofs of the results in Section 4.11

Proof of Lemma 4.11.1. The discrete lifted transform of signal w̄c for m ∈ M, is

given by

Ewc(e
jθ ; m) =

∑

k∈Z

w̄c[Mk + m]e−jθk

=
∑

k∈Z

∑

l∈Z

ḡn[Mk + m − l] w̄n[l]e−jθk

=
∑

k∈Z

M−1
∑

i=0

∑

l∈Z

ḡn[Mk + m − Ml − i] w̄n[Ml + i]e−jθk

=
∑

k∈Z

M−1
∑

i=0

∑

l∈Z

ḡn[M(k − l)+ m − i] w̄n[Ml + i]e−jθk

=
M−1
∑

i=0

∑

k∈Z

ḡn[Mk + m − i]e−jθk
∑

l

w̄n[Ml + i]e−jθl

=
M−1
∑

i=0

Egn(e
jθ ,m − i) Ewn(e

jθ , i)

Using discrete key lifting formula defined in Corollary 4.5.5, at each θ ∈ [−π, π ]

we have

Ewc(e
jθ ; m) = 1

M

M−1
∑

i=0

M−1
∑

k=0

Ḡn(e
jωk h′

)ejωk h′(m−i) Ewn(e
jθ , i)

= 1

M

M−1
∑

k=0

Ḡn(e
jωk h′

)ejωk h′m
M−1
∑

i=0

Ewn(e
jθ , i)ejωk h′(−i)

= 1√
M

M−1
∑

k=0

Ḡn(e
jωk h′

)ejωkh′m 〈 Ewn, Eek〉

=
M−1
∑

k=0

Ḡn(e
jωk h′

) 〈 Ewn, Eek〉 Eek(e
jθ ; m)

Note that Ḡn ∈ L∞ implies the boundedness of all singular values of Ğn at almost

each θ ∈ [−π, π ].

Proof of Lemma 4.11.3.

ĞBw̆s :=
[

Śy Ğn

]

w̆s

=
√

M

h

∑

k∈M

αk 〈w̆, p̆k〉 ēk +
∑

i∈M

Ḡn(e
jωi h′

) 〈 Ewn, Eei 〉 Eei
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=
∑

k∈M

(〈

w̆,

√

M

h
αk p̆k

〉

+
〈

Ewn, Ḡn(e
jωkh′

)∗Eek

〉

)

Eek

=
∑

k∈M

〈

[

w̆

Ewn

]

,

[ √

M
h
αk p̆k

Ḡn(e
jωk h′

)∗Eek

]〉

Eek

=
∑

k∈M,µk 6=0

µk

〈

[

w̆

Ewn

]

,
1

µk

[ √

M
h
αk p̆k

Ḡn(e
jωk h′

)∗Eek

]〉

Eek

Note that p̆n,k are mutually orthonormal.

Proof of Lemma 4.11.4. Using (4.47) and

〈[

ĕl+Mi

0

]

, p̆n,k

〉

=
{
√

M
h

ψ∗
y(jωl+Mi )

µl
k = l

0 k 6= l
,

for any w̆s ∈ L2[0, h)× CM we have

ĞA P̆Bw̆s =
∑

i∈Z

Gv(jωi )

〈

P̆Bw̆s,

[

ĕi

0

]〉

ĕi

=
∑

i∈Z

Gv(jωi )

〈

w̆s, P̆B

[

ĕi

0

]〉

ĕi

=
∑

i∈Z

Gv(jωi )

〈

w̆s,
∑

k∈M,µk 6=0

〈[

ĕi

0

]

, p̆n,k

〉

p̆n,k

〉

ĕi

=
∑

i∈Z

∑

l∈M

Gv(jωl+Mi )

〈

w̆s,
∑

k∈M,µk 6=0

〈[

ĕl+Mi

0

]

, p̆n,k

〉

p̆n,k

〉

ĕn+Mi

=
∑

i∈Z

∑

l∈M,µl 6=0

√

M

h

Gv(jωl+Mi )ψ
∗
y(jωl+Mi )

µl

〈

w̆s, p̆n,l

〉

ĕl+Mi

=
∑

l∈M,µl 6=0

〈

w̆s, p̆n,l

〉
∑

i∈Z

√

M

h

Gv(jωl+Mi )ψ
∗
y(jωl+Mi )

µl

ĕl+Mi

=
∑

l∈M,µl 6=0

ρl

〈

w̆s, p̆n,l

〉
∑

i∈Z

√

M

h

Gv(jωl+Mi )ψ
∗
y(jωl+Mi )

ρlµl

ĕl+Mi

=
∑

l∈M,µl 6=0

ρl

〈

w̆s, p̆n,l

〉

q̆l

Proof of Lemma 4.11.12. Since,

‖ĞA − F̀n,optĞB‖ = ‖
[

Ğv − F̀n,opt Śy −F̀n,optĞn

]

‖
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≥ ‖Ğv − F̀n,opt Śy‖ ≥ ‖Ğv − F̀opt Śy‖

where last inequality follows from the fact that F̀opt is optimal over all F̀ of rank

r . This implies ‖GA − Fn,optGB‖L∞ ≥ ‖Gv − FoptSy‖L∞ .

To proof second part of the theorem, lets assume Fopt and Fn,opt are of full

rank M . This implies Ğv P̆ − F̀opt Śy = 0 and ĞA P̆B − F̀n,optĞB = 0. Now

‖ĞA − F̀n,optĞB‖ = ‖
[

Ğv P̆B − F̀n,opt Śy ĞA(I − P̆B)
]

‖
= ‖

[

0 ĞA(I − P̆B)
]

‖ = ‖ĞA(I − P̆B)‖

Similarly, for full rank Fopt, ‖Ğv − F̀opt Śy‖ = ‖Ğv(I − P̆)‖. Since, for any rank

‖ĞA − F̀n,optĞB‖ ≥ ‖Ğv − F̀opt Śy‖, then it must be true for full rank, this implies

‖ĞA(I − P̆B)‖ ≥ ‖Ğv(I − P̆)‖.





Chapter 5

Relaxed causal sampling

5.1 Introduction

Ge

we

ȳ y

v

u H S

G
-

Figure 5.1: Sampled-data setup

In this chapter, we consider the problem of designing an optimal sampler S

given a hold H and a signal generator G :=
[

Gv Gy

]T
(see Figure 5.1). A non-

causal sampler can be obtained by using the solution provided in [31]. Ignoring

causality is not a realistic scenario because most of the systems in practice are

causal or relaxed causal in nature. Relaxed causal systems loosely speaking are

systems whose present output depends not only on the present and the past inputs

but also on a limited set of future of the input (see Section 2.5 for precise definition

of relaxed causality). For example, assume that the input signal is stored in a com-

pact disk. In this case, we can design a relaxed causal system for signal processing

because some future inputs are available for processing. The maximum number

of future inputs available depends upon the data storage capability of the compact

disk. Live transmission of a marathon is another example. There we can allow a

delay of few milliseconds in transmission i.e. what we see really on the television

has happened few milliseconds in the past. We can design a relaxed causal system

for signal processing because the data in those milliseconds can be considered as

available future input. In summary, limited future inputs are sometimes available
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for signal processing. For this reason in this chapter we concentrate on the design

of relaxed-causal samplers instead of non-causal samplers, given causal hold H

and signal generator G.

Throughout this chapter, we assume that the signal generator G is known to

us. The dual problem of designing an optimal relaxed causal hold H given a

sampler is studied and solved by [40] and [29]. The design of an optimal causal

zero order hold H given an ideal sampler S (or vice-versa) is also well known

(see [37, 38, 43]). All of these papers use the lifting technique to achieve the goal

(see Chapter 2 for a review of lifting and lifting transforms). In this chapter we

study the problem of designing optimal stable (see Section 2.6) relaxed causal

samplers S given causal H and G. This problem is similar to a two-sided model

matching for LCTI systems (see [26]) but with the fundamental difference that

systems involved here are required to be linear h-time shift invariant. Lifting also

helps in obtaining a solution for this problem. We provide a frequency domain

solution as well as a ready to use state space solution using the machinery given

in [35]. This chapter is based on the papers [53] and [51].

The rest of the chapter is organized in three sections. In Section 5.2 we state our

problem more precisely and provide a (lifted) frequency domain abstract solution.

In Section 5.3, we review the fundamentals of the state-space for linear h-time shift

invariant systems. In Section 5.4 a state space solution is provided to the problem.

5.2 Problem formulation and solution

In this section we formulate the problem of designing relaxed causal samplers

given a hold and a model G :=
[

Gv Gy

]T
. We also provide a (lifted) frequency

domain solution of this problem.

Recall that an analog signal y is causal if y(t) = 0 ∀t < 0, and for a given

l ∈ N, a sampler S is (relaxed) l-causal if its output ȳ to any causal signal is

l-causal (i.e. ȳ[n] = 0 ∀n < −l).

Now, we state our problem more precisely:

Problem P4 : Given causal Gv and Gy, causal and stable hold H, and l ∈ N,

find an l-causal and stable sampler S such that Ge := Gv − HSGy is stable and

‖Ge‖L2 is minimized.

Intuitively, all the instabilities of Gv must be contained in HSGy in order for Ge

to be stable. As H and S are stable, this implies that Gv and Gy must have the

same type of instabilities. Moreover, H must pass these instabilities. Therefore,

the presence of a hold H complicates the question of existence of a solution of P4.

The complexity of P4 is further increased as it is not immediately clear how the

l-causality constraint can be imposed on the sampler. Similar to [40], lifting (and

the lifted transform) can be used here to reduce some of these complexities. It is

shown in Section 2.6 that if a system is stable then it belongs to L∞ and if a system

is l-causal and stable then it belongs to zlH∞. Also, nothing can be said about the
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space of causal Gv and Gy as they can be unstable. Therefore, problem P4 in lifted

z-domain is:

Problem P5 : Given Ğv and Ğy are causal, H̀ ∈ H∞ and l ∈ N, find Ś ∈ zlH∞

such that Ğe := Ğv − H̀ ŚĞy ∈ L∞ ∩ L2 and ‖Ğe‖L2 is minimized.

Remark 5.2.1. If there exists a solution of Problem P5 then Ğe belongs to zlH∞.

This because Ğv, Ğy, H̀ are causal and Ś is l-causal.

In order to solve P5, we break it into two parts according to the norm of Ğe:

1. Stabilization problem: find all Ś ∈ zlH∞ such that Ğe := Ğv − H̀ ŚĞy ∈
L∞.

2. Optimization problem: find an Ś ∈ zl H∞ such that it solves the Stabilization

problem and ‖Ğe‖L2 is finite and minimized.

First, we consider the stabilization problem and after parameterizing all its so-

lutions, we consider the optimization problem. For existence and parameterization

of all the solutions of the stabilization problem, we need the following assump-

tions:

Assumption A2: Gy is rational, proper and causal.

Assumption A3: There exists a factorization of H̀ = H̀i H̄o with inner H̀i ∈ H∞

(i.e. H̀∼
i H̀i = I ), and bistable and bicausal H̄o ∈ H∞.

The factorization in Assumption A3 is an example of inner-outer factorization of

hold H̀ (see [62, §6.3] for details).

Assumption A2 guarantees the existence of a coprime factorization of Ğy over

H∞ (follows from [62, theorem 4.2.4], see also [4, chap. 2,8]). N̆y and M̆y are said

to be left coprime factors in H∞ of Ğy if N̆y and M̆y are in H∞, Ğy = M̆−1
y N̆y,

and there exist Bezout factors X̆l ∈ H∞ and Y̆l ∈ H∞ such that

M̆y X̆l + N̆yY̆l = I

To have nice mathematical properties, the holds considered in this chapter are left

invertible in L∞. Assumption A3 implies left invertibility and stability of the hold.

Assumption A3 also helps in obtaining and parameterizing all the solutions of the

stabilization problem as we will see later in this section.

Both of assumptions A2 and A3 are used in the following proposition which

states the condition of existence of solutions of the stabilization problem.

Proposition 5.2.2. Given H̀ ∈ H∞, causal Ğv and Ğy, and l ∈ N. If assumptions

A2 and A3 are satisfied, then there exists a sampler Ś ∈ zlH∞ such that Ğe ∈ L∞

iff the following three conditions hold

1. 5
H̀

Ğv ∈ L∞ where1 5
H̀

:= 1 − H̀i H̀
∼
i ,

1This condition is with the constraint that Ğv is causal.
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2. there exists a coprime factorization over H∞ of Ğ :=
[

Ğv Ğy

]T
of the

form

Ğ =
[

I M̆v

0 M̆y

]−1 [
N̆v

N̆y

]

(5.1)

with M̆y, N̆y left coprime.

3. there exists a V́ ∈ L∞ such that Ḿh := H̀∼
i M̆v − V́ M̆y ∈ zl H∞.

Proof. See Appendix 5.A (page 167).

The above result can also be obtained by transforming the results of Kristalny

[26] to the sampled-data setting. Condition 1 in Proposition 5.2.2 says that if

an instability of Ğv does not ”belong” to the space Im H̀ then we cannot cancel

them by choice of Ś. Existence of a factorization of the form (5.1) in Condition 2

roughly speaking says that instabilities of Ğv must be contained in Ğy. These two

conditions are sufficient and necessary to obtain a stable sampler Ś (i.e. Ś ∈ L∞)

such that Ğe ∈ L∞. To obtain l-causal and stable sampler Ś (i.e. Ś ∈ zlH∞) we

need an extra condition that there exists a V́ ∈ L∞ such that Ḿh := H̀∼
i M̆v− V́ M̆y

is in zlH∞ (Condition 3 in Proposition 5.2.2). There may exist several such V́ ’s,

so let us define the subspace V := {V́ ∈ L∞ : Ḿh ∈ zlH∞}. Now, we show that

for any two V́1, V́2 ∈ V ⊆ L∞, projL2\zl H2(V́1 − V́2) = 0. This is used later in

Proposition 5.2.4 to obtain a parameterization of all solutions of the stabilization

problem in a single parameter. Note that V́ is a sampler, therefore, if it is in L∞

then it is in L2 by Lemma 2.4.6. Hence, it makes sense to use the projection of a

V́ ∈ V.

Lemma 5.2.3. If V́1, V́2 ∈ L∞ are such that H̀∼
i M̆v − V́i M̆y ∈ zl H∞ (i = 1, 2)

then,

projL2\zl H2(V́1 − V́2) = 0.

where H̀i, M̆v and M̆y are defined in Proposition 5.2.2.

Proof. See Appendix 5.A (page 168).

Lemma 5.2.3 is utilized in the following result. The proof is similar to the

proof of [39, lemma 1].

Proposition 5.2.4. If all the conditions of Proposition 5.2.2 are satisfied, then all

samplers Ś ∈ zlH∞ such that Ğe := Ğv − H̀ ŚĞy ∈ L∞ can be parameterized in

parameter Śα ∈ zlH∞ as

Ś = H̄−1
o (Śα M̆y − Ḿh) (5.2)

where Ḿh := H̀∼
i M̆v − V́ M̆y. In this case

Ğe = Ğv + H̀i ḾhĞy − H̀i Śα N̆y (5.3)
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Proof. See Appendix 5.A (page 168).

After solving the stabilization problem in Proposition 5.2.4, we can now con-

centrate on the optimization problem. For this, we need the following assumption:

Assumption A4: N̆y(e
jθ )N̆y(e

jθ )∗ > 0 for all θ ∈ [−π, π ]

Assumption A4 along with Assumption A2 is essential to make N̆y co-inner (i.e.

N̆y N̆∼
y = I ) in (5.1). Now, we provide a solution to the Problem P5 in the follow-

ing lemma:

Proposition 5.2.5. Let assumptions A2-A4 be satisfied. If the stabilization prob-

lem has a solution, then

1. there exist a coprime factorization over H∞ of Ğ :=
[

Ğv Ğy

]T
of the form

(5.1) with co-inner N̆y.

2. Ğe ∈ L2 iff 5
H̀

Ğv ∈ L2 where2 5
H̀

:= 1 − H̀i H̀
∼
i .

In that case, there is a unique sampler that solves

Śopt := arg inf
Ś∈zl H∞

‖Ğv − H̀ ŚĞy‖L2 = H̄−1
o (Śα,opt M̆y − Ḿh) (5.4)

where

Śα,opt = projzl H2(H̀∼
i N̆v N̆∼

y − V́ ). (5.5)

Moreover,

‖Ğe,opt‖2

L2 := ‖Ğv − H̀ ŚoptĞy‖2

L2 = ‖Ğv + H̀i ḾhĞy‖2

L2 − ‖Śα,opt‖2

L2

(5.6)

Proof. See Appendix 5.A (page 169).

Note that H̀ is a hold therefore we can never take H̀ = I , in other words we

will never have 5
H̀

= 0.

Our aim in the rest of this chapter is to apply the results of Section 5.2 to a

sampled-data setup where the signal generator and hold are given in state-space.

5.3 State-space of linear h-time shift invariant sys-

tems

In this section, we define state-space representation of linear h-time shift invariant

systems and list some of the properties that are useful in obtaining the optimal

relaxed causal sampler. State-space representation of LCTI systems is well-known

[71]. In order to understand the meaning of state-space for linear h-time shift

invariant systems consider an example of reset system.
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u

t = kh

0 x(kh)

y
Gd

Figure 5.2: Reset system Gd of Example 5.3.1. Here at time

t = kh∀k ∈ Z, the output y and internal states are reset to zero

irrespective of input u.

Example 5.3.1. Consider a linear h-time shift invariant reset system Gd shown in

Figure 5.2 whose output y is given by

y(t) = C

∫ t

kh

eA(t−s−kh)Bu(s)ds kh ≤ t < kh + h

where A, B and C are complex matrices and k ∈ Z. At time t = kh, the output y

and internal states are reset to zero even if input u is non-zero.

Changing the variable t = kh + τ , we have

y(kh + τ ) = C

∫ τ

0

eA(τ−τ1)Bu(kh + τ1)dτ1 τ ∈ [0, h). (5.7)

We aim first to write a differential equation for the above. Using our state-space

knowledge, we can express y(kh + τ ) in (5.7) as the solution of

ẋ(kh + τ ) = Ax(kh + τ )+ Bu(kh + τ ), x(kh) = 0

y(kh + τ ) = Cx(kh + τ ).

The above differential-equations resemble state-space with the difference that here

states are allowed to jump at time instants kh. The condition x(kh) = 0 says that

whatever the value of x(kh−) is, x(kh) is always zero. Taking lifted z-transform

of x,u and y, we have

˙̆x(z; τ ) = Ax̆(z; τ )+ Bŭ(z; τ ), τ ∈ [0, h) (5.8a)

y̆(z; τ ) = Cx̆(z; τ ) (5.8b)

with (boundary) condition

x̆(z; 0) = 0. (5.9)

The state-space equations (5.8) along with boundary condition (5.9) is an ex-

ample of state-space representation with two point boundary condition (STPBC)

2This condition is with the constraint that Ğv is causal.
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[36, 25, 35]. Although boundary condition (5.9) consists of one point x̆(z; 0), in

general it is a relation between x̆(z; 0) and x̆(z; h−). Hence the name two point

boundary condition. This point will be more clear if we take another example of a

rational LCTI system.

Example 5.3.2. Consider a rational LCTI system G : L2(R,Rn) → L2(R,Rn)

given in the state-space

ẋ(t) = Ax(t)+ Bu(t), t ∈ R (5.10a)

y(t) = Cx(t)+ Du(t) (5.10b)

where A, B,C and D are real matrices. For a given k ∈ N, the lifted states x̆[k](τ )

satisfy the linear differential equation

˙̆x[k](τ ) = Ax̆[k](τ )+ Bŭ[k](τ ) τ ∈ (0, h).

To obtain the initial condition x̆[k](0) for the (lifted) differential equation above we

have to use an extra condition which tell us about the jump at kh i.e. a relationship

between x̆[k](0) and x̆[k − 1](h−). In case of the system G is given by state-space

(5.10), then x(t) is continuous for inputs u ∈ L2 [57, chapter 9]. Hence, we have

the condition x̆[k](0) = x̆[k −1](h−). Therefore, the system G in the lifted domain

is given by

˙̆x[k](τ ) = Ax̆[k](τ )+ Bŭ[k](τ ) τ ∈ (0, h)

y̆[k](τ ) = Cx̆[k](τ )+ Dŭ[k](τ )

with condition

x̆[k](0) = x̆[k − 1](h−).

Taking z-transform of the lifted x̆ , we have

˙̆x(z; τ ) = Ax̆(z; τ )+ Bŭ(z; τ )
y̆(z; τ ) = Cx̆(z; τ )+ Dŭ(z; τ )

with (boundary) condition

x̆(z; 0) = 1

z
x̆(z; h−)

Example 5.3.2 shows that a rational LCTI system G is also an example of

state-space with two point boundary condition (STPBC).

As described in examples 5.3.1 and 5.3.2, we allow states to jump at time

instants kh, k ∈ Z. These jumps allow us to write not only LCTI systems but also

a much more bigger class of system. Later on we show that STPBC can be written

for holds and samplers also.
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5.3.1 State-space with two point boundary condition (STPBC)

Mirkin introduced STPBC for lifted systems in [36] using the earlier work of

Krener [25], and Gohberg and Kaashoek [18]. In this section, we define STPBC

and summarize some of its properties. This section is for reference purpose only.

We consider in this section a system G mapping u ∈ L2[0, h) to y ∈ L2[0, h)

defined by the linear differential equations as

ẋ(τ ) = Ax(τ )+ B(τ )u(τ ) (5.11a)

y(τ ) = C(τ )x(τ )+ Du(τ ) (5.11b)

with boundary condition

�x(0)+ ϒx(h−) = 0

where τ ∈ [0, h). Here for integers k,m and n, A, �,ϒ ∈ Cn×n , D ∈ Ck×m ,

B ∈ L2([0, h),Cn×m) and C ∈ L2([0, h),Ck×n). The above representation of

systems is known as state-space with two point boundary condition (STPBC). D

is known as direct feed-through term of the STPBC representation of the system G

(or in short direct feed-through term of the system G).

The system G given by (5.11) is represented by the following notation in this

thesis

y =
[

A B

C D

]

[

� ϒ
]

u (5.12)

The usefulness of the STPBC representation is already established in the [36, 35,

40, 29].

These linear differential equations are defined well-posed if the output y is

uniquely determined by the input u [25, 18]. It is shown in [25, 18] that well-

posedness is equivalent to invertibility of the matrix

4G := �+ϒeAh .

A condition for invertibility of 4G is stated in the following corollary.

Corollary 5.3.3. A necessary (but not sufficient) condition for invertibility of ma-

trix 4G := �+ϒeAh is that
[

� ϒ
]

has full row rank.

If (5.11) is well posed then the output y is given by

y(τ ) = Du(τ )+
∫ h

0

KG(τ, σ )u(σ )dσ (5.13)

where

KG(τ, σ ) =
{

C(τ )eAτ4−1
G
�e−Aσ B(σ ) if 0 ≤ σ < τ ≤ h

−C(τ )eAτ4−1
G
ϒeA(h−σ)B(σ ) if 0 ≤ τ < σ ≤ h

(5.14)
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Alternatively, the output y(τ ) can be written as

y(τ ) =Du(τ )− C(τ )

∫ h

τ
eA(τ−σ)B(σ )u(σ ) dσ

+ C(τ )eAτ4−1
G
�

∫ h

0

e−Aσ B(σ )u(σ ) dσ (5.15a)

=Du(τ )+ C(τ )

∫ τ

0

eA(τ−σ)B(σ )u(σ ) dσ

− C(τ )eAτ4−1
G
ϒ

∫ h

0

eA(h−σ)B(σ )u(σ ) dσ. (5.15b)

The y(τ ) given in (5.15) is sometimes more useful than y(τ ) given in (5.13). The

proof of (5.15) is given in Appendix 5.B (page 170).

We say that two STPBCs G1 and G2 are equivalent if for the same input, the

output of both systems are equal in L2 sense. In other words, the systems G1 and

G2 given by

Gi =
[

Ai Bi

Ci Di

]

[

�i ϒi

]

(5.16)

where i = {1, 2}, are equivalent iff D1 = D2 and KG1
(τ, σ ) = KG2

(τ, σ ). The

following corollary is immediate from the (5.13).

Corollary 5.3.4. Suppose that the system G given by STPBC (5.12) is well posed.

Define G1 with STPBC

G1 =
[

A B

C D

]

[

S� Sϒ
]

where S is a real matrix. If S is an invertible matrix then

G ≡ G1

Proof. As feed-trough matrix D is same, G ≡ G1 iff KG(τ, σ ) = KG1
(τ, σ ). This

follows from the fact that

C(τ )eAτ4−1
G
�e−Aσ B(σ ) = C(τ )eAτ (S4G)

−1S�e−Aσ B(σ )

−C(τ )eAτ4−1
G
ϒeA(h−σ)B = −C(τ )eAτ (S4G)

−1SϒeA(h−σ)B(σ )

Now we list some basic operations in terms of STPBC [36]:

Lemma 5.3.5. Let G and Gi for i = {1, 2} be given by STPBC (5.12) and (5.16)

respectively. If G and Gi are well-posed, then
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1. Similarity transformation

[

T AT −1 T B

CT −1 D

]

[

S�T −1 SϒT −1
]

≡ G

2. Parallel interconnection

G1 + G2 =





A1 0 B1

0 A2 B2

C1 C2 D1 + D2





[[

�1 0

0 �2

] [

ϒ1 0

0 ϒ2

]]

3. Series interconnection

G1G2 =





A1 B1C2 B1 D2

0 A2 B2

C1 D1C2 D1 D2





[[

�1 0

0 �2

] [

ϒ1 0

0 ϒ2

]]

All of these system are well-posed as well.

Proof. See [36].

Lemma 5.3.6. Suppose that the system G : L2[0, h) → L2[0, h) given by STPBC

(5.12) is well posed. The adjoint system of G is given by

G∗ =
[ −A∗ C∗

−B∗ D∗

]

[

ϒ∗
d �∗

d

]

where ϒd and �d are such that �ϒd = ϒ�d and

[

�d

ϒd

]

has maximal column

rank.

Proof. See Appendix 5.B (page 171).

5.3.2 Systems in STPBC

In this section, we present STPBCs of different linear h-time shift invariant sys-

tems including LCTI systems, holds and samplers. Just like the state-space does

not represent all LCTI systems, STPBCs do not represent all linear h-time shift

invariant systems. However, it represents a fairly large class of systems including

rational LCTI systems. With some modification, STPBCs can be used to represent

holds and samplers also. A generic linear h-time shift invariant system y = Gu

mapping L2(R) to L2(R) that can be represented by STPBC is given by

y̆(z) = Ğ(z)ŭ(z) : y̆(z) =
[

A B

C D

]

[

�(z) ϒ(z)
]

ŭ(z), (5.17)
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in lifted z-domain. Here for integers k, m and n, A ∈ Cn×n , B ∈ L2([0, h),Cn×m),

C ∈ L2([0, h),Ck×n), D ∈ Ck×m , and �(z) and ϒ(z) are square discrete transfer

matrices. D is known as direct feed-through term of the STPBC representation of

system Ğ (or in short, direct feed-through term of the system Ğ). The STPBC of

Ğ is well posed [35] if

det(�(z)+ ϒ(z)eAh) 6= 0.

Those values of z ∈ C for which the above does not hold are called poles of

the representation. Using (5.15), poles of Ğ(z) depend upon the factor (�(z) +
ϒ(z)eAh)−1ϒ(z) or (�(z) + ϒ(z)eAh)−1�(z). Therefore, the common roots of

�(z) and ϒ(z) are the poles of the representation but not the poles of system

Ğ. Therefore, in STPBC representation, common roots of �(z) and ϒ(z) can be

removed without any loss of generality. Region of convergence do play a role in

case of STPBC. For example, if our system Ğ is causal and stable then all poles of

the STPBC Ğ(z) must lie with in the unit disc D.

Rational LCTI system in STPBC

We start with an STPBC of a rational LCTI system.

Lemma 5.3.7. Assume an LCTI system G : L2 → L2 is given in state-space

ẋ(t) = Ax(t)+ Bu(t)

y(t) = Cx(t)+ Du(t).

where A, B,C and D are constant matrices. Then transfer function Ğ(z) of the

lifted system Ğ can be written as

Ğ(z) =
[

A B

C D

]

[

z I −I
]

(5.18)

Proof. See Example 5.3.2.

STPBC for Holds

A hold is a system which converts a discrete signal ū : Z → Cnū back to an analog

signal u : R → Cnu . Here nū and nu are positive integers. If the hold is linear and

h-time shift invariant then it is given by

u = Hū : u(t) =
∑

n∈Z

φ(t − nh − σ)ū[n], t ∈ R

where σ ∈ (0, h) and φ(t − σ) is the hold function. The hold given above can

be viewed as a cascade of a modulated impulse train and an h-time shift invariant

system G with kernel g(t, s) such that g(t, nh + σ) = φ(t − nh − σ) because

u(t) =
∫ ∞

−∞
g(t, s)

∑

n∈Z

δ(s − nh − σ)ū[n]ds =
∑

n∈Z

g(t, nh + σ)ū[n].
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We assume that linear h-time shift invariant system G has a well-posed STPBC

representation in lifted z-domain as

Ğ(z) =
[

A B

C 0

]

[

�(z) ϒ(z)
]

(5.19)

Here for integers k,m and n, A ∈ Cn×n , D ∈ Ck×m , B ∈ C2([0, h),Cn×m)

(space of continuous functions in L2([0, h),Cn×m)), C ∈ L2([0, h),Ck×n), and

�(z) and ϒ(z) are square discrete transfer matrices. Note that we assumed that B

is continuous. The feed trough term D is assumed 0 in (5.19) so that we have a

stable hold [57, chapter 9].

Using Ğ(z) given in (5.19), the hold H in the lifted z-domain is given by

(see [35, 36] also)

H̀(z) = Ğ(z)Jσ (5.20)

where the impulse operator Jσ is defined as

Jση := δ(τ − σ)η η ∈ Cn, τ, σ ∈ (0, h) (5.21)

The function δ(τ ) has a meaning only in the sense of the integral

g(σ ) =
∫ h

0

g(τ )δ(τ − σ) dτ, σ ∈ (0, h).

Here we always assume that g(τ ) is a continuous function on (0, h) to avoid math-

ematical subtleties. This assumption is satisfied in case of hold H̀ given in (5.20)

because here eAσ B(σ ) (see (5.15)) is assumed continuous.

For any g ∈ C2(0, h) (space of continuous functions in L2((0, h),Cn)), we

have

〈Jση, g〉C2(0,h) =
∫ h

0

g(τ )∗δ(τ − σ)η dτ

= g(σ )∗η

=
〈

η,J ∗
σ g
〉

Cn

where sampling operator J ∗
σ is defined as

J ∗
σ g := g(σ ) g ∈ C2(0, h). (5.22)

As long as g is continuous we can treat J ∗
σ as the adjoint of Jσ and vice-versa.

For a detailed discussion on the operators J ∗
σ see [36]. The operator J ∗

σ helps in

writing an STPBC for samplers.

Using (5.15), the output ŭ(z) = H̀(z)ū(z) is given by

ŭ(z; τ ) = C(τ )eAτ
(

1[0,h)(τ − σ)− (�(z)+ϒ(z)eAh)−1ϒ(z)
)

B(σ )ū(z)

(5.23)

where B(σ ) ∈ Cn×m is the value of B evaluated at the given σ .

Let us consider few examples now.
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Example 5.3.8. Suppose the hold H is a cascade of a modulated impulse train

and a causal rational LCTI system G given in state-space as

G =
[

A B

C 0

]

where A, B and C are constant complex matrices. Now, the STPBC of Ğ(z) can

be obtained by (5.18). Therefore, H in lifted z-domain is given by

H̀(z) =
[

A B

C 0

]

[

z I −I
]

J0+

Now, we consider the generalized zero order hold discussed in [40].

Example 5.3.9. A generalized zero order hold Hz : Cn → L2 is a hold whose

hold function has support on [0, h). Here we consider an example of generalized

zero order hold Hz given by (see [57, chapter 10])

ẋ(kh + τ ) = Ax(kh + τ )+ Bū[k], k ∈ Z, τ ∈ [0, h) (5.24a)

y(kh + τ ) = Cx(kh + τ ) (5.24b)

with boundary condition

0 = x(kh) (5.25)

where A, B, and C are constant complex matrices.

Solving (5.24) with boundary condition (5.25), we have

y(kh + τ ) = CeAτ Bū[k], k ∈ Z

Taking z-transform we have,

y̆(z; τ ) = CeAτ Bŭ(z)

with boundary condition

x(z; 0) = 0

The STPBC of the generalized zero order hold Hz : Cn → L2 given by (5.24)

with boundary condition (5.25) in lifted z-domain is given by

H̀z(z) =
[

A B

C 0

]

[

I 0
]

J0+

The ideal zero order hold is a special case of generalized zero order hold dis-

cussed in Example 5.3.9.
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Example 5.3.10. A ideal zero order hold Hiz : Cn → L2 is a hold whose hold

function is the rectangular pulse 1[0,h)(t). The ideal zero order hold Hiz is a

special case of the generalized hold given by (5.24) i.e

y = Hizu : y(kh + τ ) = ū[k]

with boundary condition

0 = x(kh)

Therefore, the ideal zero order hold Hiz in the lifted z-domain is given by

H̀iz(z) =
[

0 I

I 0

]

[

I 0
]

J0+

STPBC for samplers

A sampler S is a system that maps an analog signal y : R → Cny to a discrete

signal ȳ : Z → Cn ȳ . Here ny and n ȳ are positive integers. If the sampler is linear

and h-time shift invariant then it is given by

ȳ = S y : ȳ[n] =
∫ ∞

−∞
ψ(nh + σ − s)y(s) ds

where σ ∈ (0, h) and ψ(t −σ) is the sampling function. The sampler given above

can be viewed as a cascade of an h-time shift invariant system G with kernel g(t, s)

such that g(nh + σ, s) = ψ(nh + σ − s) and an ideal sampler sampling at every

nh + σ time instants because

ȳ[n] =
∫ ∞

−∞
g(nh + σ, s)y(s)ds.

We assume that the linear h-time shift invariant system G has a well-posed STPBC

representation in lifted z-domain as

Ğ(z) =
[

A B

C 0

]

[

�(z) ϒ(z)
]

(5.26)

Here for integers k,m and n, A ∈ Cn×n , D ∈ Ck×m , B ∈ L2([0, h),Cn×m),

C ∈ C2([0, h),Ck×n), and �(z) and ϒ(z) are square discrete transfer matrices.

Note that we assumed that C is continuous.

Using Ğ(z) given in (5.26), the sampler S in the lifted z-domain is given by

(see [35, 36] also)

Ś(z) = J ∗
σ Ğ(z), σ ∈ (0, h)

where J ∗
σ is defined in (5.22).
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We know that J ∗
σ g(τ ) has a meaning only if g(τ ) is continuous in (0, h). This

condition is satisfied in case of sampler Ś because here C(τ )eAτ (see (5.15)) is

assumed continuous.

It is not necessary that the feed-through term (i.e. D) for sampler in (5.26) is

zero. However, if D 6= 0 then the domain of sampler must be restricted to have a

proper meaning of the sampling operator J ∗
σ . Then, for a given z and σ ∈ (0, h),

Ś(z)ŭ(z) = J ∗
σ

[

A B

C D

]

[

� ϒ
]

ŭ(z), ŭ(z) ∈ L2(0, h) & continuous

is well-defined. Here domain is restricted to continuous inputs only.

Let us consider few examples now. First, we take an example of ideal non-

causal sampling.

Example 5.3.11. The ideal non-causal sampler Sidl is defined as

ȳ = Sidlu : ȳ[k] = u(kh+)

where u(kh + τ ) is continuous in (0, h) for each k ∈ Z. Taking lifted z-transform

of ȳ and u, we have

ȳ(z) = ŭ(z; 0+) = J ∗
0+ ŭ(z; τ )

Hence, the ideal non-causal sampler in the lifted z-domain is given by

Śidl(z) = J ∗
0+

Now, we consider a cascade of an LCTI system with ideal non-causal sampler.

Example 5.3.12. Given a sampler S which is a cascade of a causal rational LCTI

system G given by state-space

G =
[

A B

C 0

]

and the ideal non-causal sampler sampling with sampling period h. Here A, B

and C are constant complex matrices. Now, the STPBC of Ğ(z) can be obtained

by (5.18). Therefore, it can be shown that S in lifted z-domain is given by

Ś(z) = J ∗
0+

[

A B

C 0

]

[

z I −I
]

.

Now, we take an example of ideal causal sampling.

Example 5.3.13. The ideal causal sampler Sidl is defined as

ȳ = Sidlu : ȳ[k] = u(kh−)
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assuming u(kh + τ ) is continuous in (0, h) for each k ∈ Z. Taking lifted z-

transform of ȳ and u, we have

ȳ(z) = ŭ(z; 0−) = 1

z
ŭ(z; h−) = 1

z
J ∗

h- ŭ(z; τ )

Hence, the ideal causal sampler in the lifted z-domain is given by

Śidl(z) = 1

z
J ∗

h-

Conjugate of the system given in STPBC

The conjugate of the system Ğ(z) is defined as Ğ∼(z) := [G(z−∗)]∗ [35]. By

using Lemma 5.3.6, it can be shown that conjugate Ğ∼(z) of the system Ğ(z)

given in (5.17) has STPBC (see [35] for details)

Ğ∼(z) =
[ −A∗ C∗

−B∗ D∗

]

[

ϒ∼
d (z) �∼

d (z)
]

(5.27)

where �d(z) and ϒd(z) are any square discrete transfer matrices satisfying

�(z)ϒd(z) = ϒ(z)�d (z)

and such that

[

�d(z)

ϒd(z)

]

has full normal rank.

It is clear from (5.15) that as long as a system G has zero feed through term D,

its output is continuous for a L2 input. This fact is used in the following Lemma

which is useful in obtaining conjugates of samplers and holds.

Lemma 5.3.14. Assume that for integers k,m and n, A, �,ϒ ∈ Cn×n , D ∈
Ck×m , B ∈ L2([0, h),Cn×m) and C ∈ L2([0, h),Ck×n). Let system G be given

by STPBC

G =
[

A B

C 0

]

[

� ϒ
]

. (5.28)

Now, for a given σ ∈ (0, h),

1. If B is continuous then (GJσ )
∗ = J ∗

σ G
∗.

2. If C is continuous then (J ∗
σ G)

∗ = G∗Jσ .

Proof. See [36].

Using above Lemma 5.3.14, we obtain the conjugates of samplers and holds.

Corollary 5.3.15. Given a σ ∈ (0, h).
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1. Let system Ğ is given by STPBC (5.19) with B continuous and hold H̀ =
ĞJσ . Then, the conjugate H̀∼ of hold H̀ is given by H̀∼ = J ∗

σ Ğ∼.

2. Let system Ğ is given by STPBC (5.26) with C continuous and sampler

Ś = J ∗
σ Ğ. Then, the conjugate Ś∼ of sampler Ś is given by Ś∼ = Ğ∼Jσ .

Proof. Follows from Lemma 5.3.14.

5.3.3 Stability and causality of systems given in STPBC

In this section, we describe the stability and causality condition of a system given

in STPBC.

It is explained in Section 2.6 that if a system is stable and causal then the

system is in H∞. We start with a simple case. Consider a linear h-time shift

invariant analog system T whose lifted impulse response system T̆ [k] is zero at

all k ∈ Z except at k = 0. The kernel of T̆ [0] can be a complicated function of

time and may render a non-L2(R) output of the system T to a L2(R) input (i.e. the

system may not be in L∞). Therefore, the stability of such a system is not trivial

and depends upon the kernel of T̆ [0]. The following result helps in identifying

the stability of all analog systems T whose lifted impulse response system T̆ [k] is

zero at all k ∈ Z except at k = 0.

Lemma 5.3.16. Let g ∈ L2[0, h)× L2[0, h) and 0 ≤ C < ∞. Let a linear h-time

shift invariant system T defined in lifted z-domain by

f̆ = T̆ ŭ : f̆ (z; τ ) =
∫ h

0

g(τ, σ )ŭ(z; σ)dσ, τ ∈ [0, h)

where

ess sup
τ∈[0,h)

∫ h

0

|g(τ, σ )|dσ ≤ C

ess sup
σ∈[0,h)

∫ h

0

|g(τ, σ )|dτ ≤ C.

Now, we have that T belongs to H∞.

Proof. See Appendix 5.B (page 173).

The condition for stability and causality of an analog system given in STPBC

is described in the following lemma.

Lemma 5.3.17. For integers k,m and n, let A ∈ Cn×n , D ∈ Ck×m , B ∈
C2([0, h),Cn×m) and C ∈ C2([0, h),Ck×n). Then, there exists matrices B̄ and C̄

that satisfy

B̄ B̄∗ :=
∫ h

0

eA(h−σ)B(σ )B(σ )∗eA∗(h−σ) dσ, (5.29a)
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C̄∗C̄ :=
∫ h

0

eA∗τC∗(τ )C(τ )eAτ dτ. (5.29b)

Let Ğ be a system with STPBC

Ğ(z) =
[

A B

C D

]

[

�(z) ϒ(z)
]

(5.30)

where �(z) and ϒ(z) are square discrete transfer matrices. Then,

Ğ ∈ H∞ ⇐⇒ Ȳ ∈ H∞

where Ȳ is a discrete system with

Ȳ (z) = C̄(�(z)+ϒ(z)eAh)−1ϒ(z)B̄ (5.31)

Proof. See Appendix 5.B (page 174).

Similar to Lemma 5.3.17, the condition for stability and causality of holds and

samplers can be stated.

Lemma 5.3.18. Let A, D, B, C, �(z) and ϒ(z) be as in Lemma 5.3.17. Let

matrices B̄ and C̄ be such that they satisfy (5.29a) and (5.29b) respectively. Now,

1. if a hold H̀ is given by STPBC

H̀(z) =
[

A B

C 0

]

[

�(z) ϒ(z)
]

Jr (5.32)

for some fixed r ∈ (0, h), then

H̆ ∈ H∞ ⇐⇒ ȲH ∈ H∞

where ȲH is a discrete system with

ȲH (z) = C̄(�(z)+ ϒ(z)eAh)−1�(z)e−Ar B(r) (5.33)

2. if a sampler Ś is given by STPBC

Ś(z) = J ∗
r

[

A B

C 0

]

[

�(z) ϒ(z)
]

(5.34)

for some fixed r ∈ (0, h), then

Ś ∈ H∞ ⇐⇒ ȲS ∈ H∞

where ȲS is a discrete system with

ȲS(z) = C(r)eAr (�(z)+ ϒ(z)eAh)−1ϒ(z)B̄ (5.35)
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Proof. Similar to the proof Lemma 5.3.17.

Remark 5.3.19. Lemmas 5.3.16, 5.3.17 and 5.3.18 hold even if H∞ is replaced

by L∞. This will help in the cases where we are only interested in stability.

We can write a state space representation of the discrete system Ȳ in (5.31)

more easily if �(z) = z I and ϒ(z) = −ϒ ∈ Cn×n . In this case, we can apply

our knowledge about state-space representation. The same can be said for discrete

systems ȲH in (5.33) and ȲS in (5.35).

Corollary 5.3.20. If �(z) = z I and ϒ(z) = −ϒ ∈ Cn×n in Lemma 5.3.17 and

Lemma 5.3.18 then the system Ğ given in (5.30), the hold H̀ given by (5.32) and

the sampler Ś (5.34) are in H∞ if ϒeAh is Schur (i.e. having eigenvalues in D).

Proof. The proof follows from Lemma 5.3.17 and Lemma 5.3.18.

5.3.4 H2 norm of systems given in STPBC

This section is devoted to the H2 norm of systems that are represented as STPBC.

Similar to Section 5.3.3, we start with static systems.

Lemma 5.3.21. Let g ∈ L2[0, h)× L2[0, h). If an operator T : L2(R) → L2(R)

is given in lifted z-domain by

f̆ = T̆ ŭ : f̆ (z; τ ) =
∫ h

0

g(τ, σ )ŭ(z; σ)dσ, τ ∈ [0, h)

then T ∈ H2.

Proof. Since T belongs to L2 (see [67, section 7.3] for a proof) and it is causal

(see Lemma 2.5.8), we have that T ∈ H2.

It is well known that if the direct feed through term of an analog system given

in state-space is not zero, then that system does not have a finite H2 norm. The

same can be said about systems represented by STPBC.

Lemma 5.3.22. Let Ğ is a system with STPBC given by (5.30). Now, if D 6= 0

then Ğ /∈ L2.

Proof. The proof follows from the fact that constant multiplicative operators map-

ping L2[0, h) to L2[0, h) are not compact (hence not Hilbert-Schmidt).

A result similar to Lemma 5.3.17 and Lemma 5.3.18 can be stated for the H2

norm of the systems. However, most of the systems given in this thesis are in H∞

and for such systems we have the following simple result.
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Lemma 5.3.23. Let A, B, C, �(z) and ϒ(z) as in Lemma 5.3.17. Let a system Ğ

in STPBC is given by

Ğ(z) :=
[

A B

C 0

]

[

�(z) −ϒ(z)
]

Then G ∈ H∞ implies G ∈ H2.

Proof. Using (5.15), we have that

Ğ = X̆ − Y̆

where

X̆(z)ŭ(z) := C(τ )

∫ τ

0

eA(τ−σ)B(σ )ŭ(σ ) dσ, τ ∈ [0, h)

Y̆ (z)ŭ(z) := C(τ )eAτ (�(z)+ ϒ(z)eAh)−1ϒ(z)

∫ h

0

eA(h−σ)B(σ )ŭ(σ ) dσ.

Since eA(τ−σ)
1(τ − σ) ∈ L2[0, h) × L2[0, h) and bounded, it follows that X̆ ∈

H∞ ∩ H2 by lemmas 5.3.16 and 5.3.21. Since Y̆ (z) is a hybrid signal processor

(i.e. a cascade of sampler, discrete system and a hold), we have that rank Y̆ (ejθ )

is uniformly bounded for all θ ∈ [−π, π ]. Therefore if Y̆ in H∞, it is in H2 (see

Lemma 2.4.6).

Remark 5.3.24. Lemma 5.3.23 holds even if H∞ and H2 are replaced by L∞ and

L2 respectively.

As shown in the above lemma, we check that the systems are in H2 or not

without worrying much about �(z) and ϒ(z). However the calculation of the H2

norm depends upon the actual value of �(z) and ϒ(z). Therefore, in this section

we calculate the H2 norm of systems that have �(z) = z I and ϒ(z) = −ϒ ∈
Cn×n . Most of the systems discussed later in this chapter have these boundary

conditions. These systems are such that their H2 norm is equal to the H2 norm of

a discrete system.

Lemma 5.3.25. For integers k,m and n, let A, ϒ ∈ Cn×n , B ∈ C2([0, h),Cn×m)

and C ∈ C2([0, h),Ck×n). Let matrices B̄ and C̄ be such that they satisfy (5.29a)

and (5.29b) respectively. Let Ğ be a causal system with STPBC given by

Ğ(z) =
[

A B

C 0

]

[

z I −ϒ
]

. (5.36)

If Ğ ∈ H2 then the squared H2 norm of Ğ equals

‖Ğ‖2

H2 = 1

h
‖D̆‖2

H S + ‖Ȳ‖2

H2 (5.37)
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where D̆ : L2[0, h) → L2[0, h) is given by

y̆ = D̆ŭ : y̆(τ ) =
∫ h

0

C(τ )eA(τ−σ)B(σ )1(τ − σ)ŭ(σ )dσ (5.38)

and Ȳ is a discrete system with

Ȳ (z) = C̄(z I − ϒeAh)−1ϒ B̄

The squared Hilbert-Schmidt norm of D̆ is given by

‖D̆‖2
H S = tr

∫ h

0

∫ h

0

C(τ )eA(τ−σ)B(σ )B(σ )∗eA∗(τ−σ)C∗(τ )1(τ − σ)dσdτ

(5.39)

Proof. See Appendix 5.B (page 175).

In a similar way, we can state the following result about H2 norm of holds and

samplers.

Lemma 5.3.26. Let A, B, C and ϒ as in Lemma 5.3.25. Let matrices B̄ and C̄

are such that they satisfy (5.29a) and (5.29b) respectively. Now,

1. if a causal hold H̀ is given by STPBC

H̀(z) =
[

A B

C 0

]

[

z I −ϒ
]

J0+

then

‖H̆‖H2 = ‖ȲH ‖H2

where ȲH is a discrete system with

ȲH (z) = C̄(z I −ϒeAh)−1 B(0+)

2. if a causal sampler Ś is given by STPBC

Ś(z) = J ∗
0+

[

A B

C 0

]

[

z I −ϒ
]

then

‖Ś‖H2 = ‖ȲS‖H2

where ȲS is a discrete system with

ȲS(z) = C(0)(z I − ϒeAh)−1ϒ B̄



138 Chapter 5. Relaxed causal sampling

Proof. The proof is similar to the proof Lemma 5.3.25. We also used

‖C̄(z I −ϒeAh)−1 B(0+)‖H2 = ‖C̄(z I −ϒeAh)−1(z I )B(0+)‖H2

in the proof.

Remark 5.3.27. The adjoint of an anti-causal system is causal, therefore L2 norm

of the anti-causal system can be calculated by using lemmas 5.3.25 and 5.3.26.

To calculate the H2 norm of a discrete system the following standard result is

very useful.

Lemma 5.3.28. Let a causal discrete system Ḡ be given by state space

Ḡ =
(

A B

C D

)

where A, B,C and D are constant matrices. If A is Schur then

‖Ḡ‖2

H2 = 1

h
(tr
(

DD∗)+ tr
(

C∗CWc

)

) = 1

h
(tr
(

DD∗)+ tr
(

Wb B B∗))

where

Wc = AWc A∗ + B B∗, Wb = A∗Wb A + C∗C

Proof. Standard.

Note that the standard H2 norm of a discrete system given in [71] is a scaled

version of H2 norm defined in Section 2.4.3.

5.3.5 Computations

Integrals given in (5.29) and (5.39) seems very tedious to evaluate. However if B

and C are constant then these integral can be calculated using matrix exponentials

[28, 3, 36].

Lemma 5.3.29. If A is a square constant matrix, and B and C are constant ma-

trices of appropriate dimensions then

∫ h

0

eAs B B∗eA∗sds = Ŵ∗
33(A, B)Ŵ23(A, B)

∫ h

0

∫ t

0

eAs B B∗eA∗sdsdt = Ŵ∗
33(A, B)Ŵ13(A, B)

∫ h

0

eA∗sC∗CeAsds = 3∗
22(A,C)312(A,C)
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where

Ŵ(A, B) =





Ŵ11(A, B) Ŵ12(A, B) Ŵ13(A, B)

0 Ŵ22(A, B) Ŵ23(A, B)

0 0 Ŵ33(A, B)





= exp











−A I 0

0 −A B B∗

0 0 A∗



 h







and

3(A,C) =
[

311(A,C) 312(A,C)

0 322(A,C)

]

= exp

{[

−A∗ C∗C

0 A

]

h

}

Proof. The proof is given in [3].

Other STPBC results

This section contains some lemmas which are useful in this chapter. Most of the

results are from [36, 35] given here for reference purpose.

The following lemma explains the different methods of writing discrete sys-

tems mapping from ℓ2 to ℓ2 in STPBC.

Lemma 5.3.30. Given a well-posed system G with STPBC (5.28). Assume that B

and C are continuous in (5.28). Then

1. J ∗
h-GJ0+ = C(h−)eAh(�+ϒeAh)−1�B(0+)

2. J ∗
0+GJh- = −C(0+)(�+ ϒeAh)−1ϒB(h−)

In addition, if C(0+)B(0+) = 0, then

3. J ∗
0+GJ0+ = C(0+)(�+ϒeAh)−1�B(0+)

and if C(h−)B(h−) = 0, then

4. J ∗
h-GJh- = −C(h−)eAh(�+ϒeAh)−1ϒB(h−)

Proof. Follows from (5.15). See [36] for detail.

The following lemma explains how to write the impulse input system as a

system without impulse input.

Lemma 5.3.31. The well-posed system mapping

[

u

η̄

]

∈ L2[0, h) × Rn to y1 ∈
L2[0, h) given by STPBC

ẋ1 = Ax1 + Bu + BηJ0+ η̄, �x1(0)+ϒx1(h
−) = 0

y1 = Cx1
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is equivalent (i.e. for same inputs u and η̄, y1 = y2 in Lebesgue sense) to system

ẋ2 = Ax2 + Bu, �(x2(0)− Bηη̄)+ϒx2(h
−) = 0

y2 = Cx2.

Proof. See [35, Proposition A.2].

We can also represent a hybrid signal processor (i.e. a cascade of a sampler

and a hold) in STPBC. The following lemma essentially from [36] helps here.

Lemma 5.3.32. Given

G1 :=
[

A1 B1

C1 0

]

[

�1 ϒ1

]

Jλ1
, G2 := J ∗

λ2

[

A2 B2

C2 0

]

[

�2 ϒ2

]

where λi , i = 1, 2 be either 0+ or h−, Ai , �i , ϒi are square matrices, and Bi and

Ci are matrix valued functions in C2([0, h)) of appropriate dimensions then the

STPBC of system G f := G1Jλ1
J ∗
λ2
G2 is given by

G f :=





A1 0 0

0 A2 B2

C1 0 0





[[

�1 (1 − λ2)M1

0 �2

] [

ϒ1 λ2 M1

0 ϒ2

]]

where M1 := (λ1ϒ1 − (1 − λ1)�1)B1C2.

Proof. See [36, lemma 3].

5.4 STPBC solution

In this section we apply the results of Section 5.2 to a sampled-data setup where

the signal generator and hold are given in state-space with two-point boundary

condition (STPBC). We assume that signal generator G is causal and in Laplace

domain is given by,

G(s) =
[

Gv(s)

Gy(s)

]

= D + C(s I − A)−1 B (5.40)

where C :=
[

Cv
Cy

]

and D :=
[

0

Dy

]

. This is a LCTI system therefore the STPBC

of G in lifted z-domain is given by (see Lemma 5.3.7):

Ğ(z) =
[

Ğv(z)

Ğy(z)

]

=





A B

Cv
Cy

0

Dy





[

z I −I
]

(5.41)
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The reason of zero direct feed-through term of Ğv is explained in Remark 5.4.1.

Without loss of generality, we assume that A = diag{As, Au}, where As has all

its eigenvalues in C− := {z ∈ C : real(z) < 0} and Au has all its eigenvalues in

C\C−. Also let Cv :=
[

Cvs Cvu

]

be the partition of Cv according to As and Au .

Therefore

Ğ(z) =









As 0

0 Au
B

Cvs Cvu

Cy

0

Dy









[

z I −I
]

. (5.42)

Note that systems Gv and Gy are causal (but not necessarily stable) by assump-

tion. However, to obtain an optimal sampler described in Proposition 5.2.5, in

addition to causality, we need that Gy must be rational and proper (Assumption

A2). Since Gy is represented in state-space, it is rational and proper. Also, we

need that there exists a left coprime-factorization of Ğ of the form (5.1). To this

end, we need the following assumption.

Assumption A5: (Cy, A) is observable and (A, B) is controllable.

Later it will be explained in Section 5.4.1 that A5 allows the existence of a co-

prime factorization, and assumptions A4 and A5 allow the existence of a coprime

factorization Ğy = M̆−1
y N̆y with N̆y co-inner.

Also, we consider hold H̀ with STPBC given by [35]:

H̀(z) :=
[

AH BH

CH 0

]

[

z I −E
]

J0+ (5.43)

where impulse operator J0+ defined in (5.21) is needed to perform the discrete to

analog domain conversion. The holds given by STPBC (5.43) can represent a large

class of stable holds with infinite or finite impulse response. For example the ideal

zero order hold H̀iz can be obtained by setting I = CH = BH and 0 = AH = E .

We also assume the following about H̀ :

Assumption A6: EeAH h is a Schur matrix,

Assumption A7: BH has full column rank.

Assumption A8: (CH , AH ) is observable.

EeAH h is a Schur matrix is just a restatement of the fact that H̀ ∈ H∞ (see Corol-

lary 5.3.20). Assumption A6 allow us to obtain an right coprime factorization of

H̀ and assumptions A6-A8 allow us to obtain an inner-outer factorization of H̀ .

This is explained in Section 5.4.3.

Remark 5.4.1. If the direct feed-through term of Ğv is not zero in (5.41) then

STPBC of (I − H̀i H̀
∼
i )Ğv will have a non-zero direct feed-through term. This im-

plies (I − H̀i H̀
∼
i )Ğv /∈ L2 (see Lemma 5.3.22). Therefore the solution of Problem

P5 does not exists (see Proposition 5.2.5). Hence, the direct feed-through term of

Ğv is chosen zero in (5.41).
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5.4.1 Left coprime-factorization of Ğ

The following lemma describes the left coprime-factorization over H∞ of Ğ which

is required in Proposition 5.2.5.

Lemma 5.4.2. Let

[

Ğv

Ğy

]

have STPBC given in (5.41). If Assumption A5 is satis-

fied then there exists an L such that A + LCy is Hurwitz. In that case

[

Ğv

Ğy

]

=
[

I M̆v

0 M̆y

]−1 [
N̆v

N̆y

]

(5.44)

for

[

M̆v N̆v

M̆y N̆y

]

:=





A + LCy L B + L Dy

Cv 0 0

Z yCy Z y Z y Dy





[

z I −I
]

(5.45)

where Z y is any invertible complex matrix. In this case, M̆y and N̆y are left co-

prime, and M̆y, M̆v, N̆y and N̆v belong to H∞.

Proof. See Appendix 5.C (page 176).

We also need that N̆y to be co-inner in the Proposition 5.2.5. Here, Assumption

A4 helps. We start with the following standard result to check Assumption A4 in

the state space.

Lemma 5.4.3. Let N̆y be as in (5.45). If (Cy, A) is observable (see A5) then

Assumption A4 (N̆y(e
jθ )N̆∼

y (e
jθ ) > 0 ∀θ ∈ [−π, π ]) is satisfied iff Dy has full

row rank and

[

A − jωI B

Cy Dy

]

has full row rank for all ω ∈ R.

Proof. See Appendix 5.C (page 177).

The following result explains how to do the left coprime factorization Ğy =
M̆−1

y N̆y with N̆y co-inner.

Lemma 5.4.4. If assumptions A4 and A5 are satisfied then by Lemma 5.4.2 there

exists a coprime factorization of Ğ given in (5.41) of the form (5.44), R := Dy D∗
y

is invertible and there exists a unique stabilizing solution X (i.e. such that matrix

A + (−(XC∗
y + B D∗

y)R
−1)Cy is Hurwitz) of the Riccati equation

AX + X A∗ − (XC∗
y + B D∗

y)R
−1(Cy X + Dy B∗)+ B B∗ = 0.
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If we choose

Z y = R− 1
2

L = −(XC∗
y + B D∗

y)R
−1

then N̆y defined in (5.45) is co-inner.

Proof. Follows from Lemma 5.4.3 and [71, Theorem 13.35].

The following lemma is useful later in obtaining the optimal sampler.

Lemma 5.4.5. Let L, Z y and X be as in Lemma 5.4.4, and N̆v and N̆y as in

Lemma 5.4.2. Now,

N̆v N̆∼
y =

[ −(A + LCy) (Z yCy)
∗

−Cv X 0

]

Proof. See Appendix 5.C (page 177).

5.4.2 Simplification of Assumption A3

It is desirable to have a simple criterion which tells us that Assumption A3 ( i.e.

assumption of existence of an inner-outer factorization of H̀ = H̀i H̄o with inner

H̀i ∈ H∞, and bistable and bicausal H̄o ∈ H∞) is satisfied or not. To this end,

using (5.23) we write the hold H̀(z), defined in (5.43), as

H̀(z) =
[

AH BH

CH 0

]

[

z I −E
]

J0+

= CH eAH τ
(

I + (z I − EeAH h)−1 EeAH h
)

BH

= CH eAH τ H̄s(z) (5.46)

where H̄s is a discrete system which is rational in z and it is given by

H̄s(z) :=
(

EeAH h EeAH h BH

I BH

)

(5.47)

Hence,

H̀∼(z)H̀(z) = H̄s(z)
∼C̄∗

H C̄H H̄s(z)

where C̄H is a matrix which satisfies

C̄∗
H C̄H =

∫ h

0

eA∗
H τC∗

H CH eAH τ dτ. (5.48)

The following proposition explains the relationship of Assumption A3 with

other criteria.
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Proposition 5.4.6. Let C̄H and H̄s(z) as in (5.48) and (5.47) respectively. If the

hold H̀ ∈ H∞ given by STPBC (5.43) satisfies Assumption A6 ( i.e EeAH h is

Schur) then the following are equivalent:

1. The inner outer factorization of hold H̀ = H̀i H̄o exists with inner H̀i ∈ H∞,

and bistable and bicausal H̄o ∈ H∞ (Assumption A3).

2. The spectral factorization of H̀∼ H̀ exists i.e. there exists a bistable and

bicausal spectral factor W̄ such that H̀∼ H̀ = W̄∼W̄ .

3. H̀∼(ejθ )H̀(ejθ ) > 0 i.e. the matrix

[

EeAH h − ejθ I BH

C̄H 0

]

has full column rank for every θ ∈ [−π, π ].

4. The discrete algebraic Riccati equation

Q0 =eA∗
H h E∗(Q0 − Q0 BH (B

∗
H Q0 BH )

−1 B∗
H Q0)EeAH h + C̄∗

H C̄H

has a unique solution Q0 for which (E − BH (B
∗
H Q0 BH )

−1 B∗
H Q0 E)eAH h

is Schur-stable.

5. There exists an ǫ > 0 such ‖Hū‖2 ≥ ǫ‖ū‖2 for all ū ∈ ℓ2. Here H ∈ H∞

is the hold in the time domain.

Proof. See Appendix 5.C (page 178).

Thus, using Proposition 5.4.6, we can easily check that Assumption A3 is

satisfied or not. We also use Proposition 5.4.6 later in obtaining an inner-outer

factorization of the hold.

Now, we show that Assumption A3 is satisfied if assumptions A6–A8 are

satisfied.

Lemma 5.4.7. Let STPBC of hold H̀ be given by (5.43). If assumptions A6–A8

are satisfied then there exists a factorization of H̀ = H̀i H̄o with inner H̀i ∈ H∞,

and bistable and bicausal H̄o ∈ H∞ (i.e. Assumption A3 is satisfied).

Proof. Since (CH , AH ) is observable, we have C̄∗
H C̄H > 0. This implies C̄H have

full column rank. As BH and C̄H has full column rank, condition 3 of Proposition

5.4.6 is satisfied. Now, the results follows from Proposition 5.4.6.

5.4.3 Inner-outer factorization of hold

There are many ways of obtaining an inner-outer factorization for H̀ given in

(5.43). We adopted the method used by [40] i.e we first obtain a right coprime

factorization (RCF) over H∞ of H̀ = ǸH M̄−1
H and then we make ǸH inner (i.e.
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Ǹ∼
H ǸH = I ). ǸH and M̄H are said to be coprime in H∞ if ǸH and M̄H are in H∞

and there exist Bezout factors X̄r ∈ H∞ and Ýr ∈ H∞ such that

X̄r M̄H + Ýr ǸH = I .

We start with a right coprime factorization (RCF) of H̀ .

Lemma 5.4.8. Consider the hold H̀ given by (5.43). If Assumption A6 is satisfied,

then there exists a matrix F such that (E + BH F)eAH h is Schur. Now, the Hold

H̀ = ǸH(M̄H)
−1, where ǸH ∈ H∞ and M̄H ∈ H∞ are right coprime and given

by

[

M̄H(z)

ǸH(z)

]

=





AH BHJ0+

1
z
J ∗

h- F I

CH 0





[

z I −(E + BH F)
]

(5.49)

Proof. See Appendix 5.C (page 179).

We give an important result about the Sylvester differential equation which

will be useful later.

Lemma 5.4.9. Consider the Sylvester differential equation

Ẋ(t) = AX (t)+ X (t)B + C

with initial condition X (0) = X0, where A ∈ Cm×m , B ∈ Cn×n , C ∈ Cm×n . The

solution of the Sylvester differential equation is given by

X (t) = eAt X0eBt +
∫ t

0

eAsCeBs ds

Proof. See [24, chapter 8].

Now, we concentrate on exploiting the factor F in (5.49) to make ǸH inner in

Lemma 5.4.8. This is because if ǸH is inner then the inner factor H̀i of H̀ is ǸH

and the bicausal and bistable factor H̄o of H̀ is M̄−1
H . Note that M̄−1

H is stable and

causal if the hold H̀ is stable and causal.

Since H̀ is assumed to be in H∞, F = 0 renders a trivial RCF i.e ǸH = H̀ and

M̄H = I . However, in general H̀ is not inner. Therefore, we need an non-trivial F

to make ǸH inner.

Lemma 5.4.10 (Inner-outer factorization of the Hold). Consider the Hold H̀ given

by (5.43) and suppose that assumptions A6–A8 are satisfied. Then, there exists a

unique stabilizing solution Q0 > 0 of the Riccati equation

Q0 = eA∗
H h E∗(Q0 − Q0 BH (B

∗
H Q0 BH )

−1 B∗
H Q0)EeAH h + C̄∗

H C̄H
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where C̄H is a matrix which satisfies (5.48) and B∗
H Q0 BH is invertible. If we

define

Z := (B∗
H Q0 BH )

− 1
2

F := −(B∗
H Q0 BH )

−1 B∗
H Q0 E

H̀i := ǸH Z (5.50)

H̄−1
o := M̄H Z (5.51)

where M̄H and ǸH are given by (5.49), then H̀i H̄o forms an inner-outer factoriza-

tion of H̀ with inner H̀i ∈ H∞ , and bistable and bicausal H̄o ∈ H∞.

Proof. See Appendix 5.C (page 180).

5.4.4 The condition (I − H̀i H̀
∼
i )Ğv ∈ L∞

The first thing we need to check is the condition (I − H̀i H̀
∼
i )Ğv ∈ L∞ (see

Proposition 5.2.2) for the existence of a solution of Problem P5. Note that we

have to check (I − H̀i H̀
∼
i )Ğv ∈ L∞ with the constraint that Ğv is causal. A

state space formulation of the condition can be done by using the STPBC of H̀i

(the inner factor of hold H̀ ). However, the construction of H̀i requires a Riccati

equation (see Section 5.4.3). The main aim of this section is to check the condition

(I − H̀i H̀
∼
i )Ğv ∈ L∞ with a computationally efficient method which does not

require Riccati equations. Advantage is that if the condition (I − H̀i H̀
∼
i )Ğv ∈ L∞

is not satisfied, then there is no need of doing the inner-outer factorization of hold.

We now state some results that will later help in simplifying the condition

(I − H̀i H̀
∼
i )Ğv ∈ L∞. We start with a factorization of hold H̀ into a zero order

hold and a discrete system.

Lemma 5.4.11. Assume C̄H is a matrix which satisfy (5.48) and let the discrete

system H̄s be as in (5.47). Let V̀H be a zero order hold defined as

y̆(z) = V̀H (z)x̄(z) : y̆(z; τ ) =
∫ h

0

CH eAH τ C̄+
H x̄(z)dσ, τ ∈ [0, h)

where C̄+
H is the pseudo-inverse of the matrix C̄H . Then,

1. The discrete system V̀ ∼
H V̀H is an orthogonal projection onto Im ŌC̄H

where

ŌC̄H
:= C̄H is a static discrete system in H∞.

2. V̀H V̀ ∼
H C̀H = C̀H where C̀H ∈ H∞ is a lifted zero order hold whose hold

function in lifted z-domain is given by CH eAH τ .

3. Hold H̀ given by STPBC (5.43) can be factorized into a zero order hold and

a discrete system as H̀ = V̀H H̄cs where H̄cs is a discrete system defined as

H̄cs := V̀ ∼
H H̀ = C̄H H̄s =

(

EeAH h EeAH h BH

C̄H C̄H BH

)

. (5.52)
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Proof. See Appendix 5.C (page 182).

Remark 5.4.12. The above lemma is generic in the sense that we did not assume

the observability of (CH , AH ) (Assumption A8). However, if (CH , AH ) is observ-

able then C̄H is left invertible. Hence, C̄+
H C̄H = I . Now Lemma 5.4.11.(3) follows

from H̀ = C̀H C̄+
H C̄H H̄s = V̀H H̄cs . Note that V̀H 6= 0 in this case.

Similarly, we factorize the inner factor H̀i of hold H̀ into a zero order hold and

a discrete system.

Lemma 5.4.13. Let the zero order hold V̀H and matrix C̄H be as in Lemma 5.4.11.

If assumptions A6–A8 are satisfied then

1. H̀i is factorized into a hold and a discrete system as

H̀i = V̀H H̄ics

where H̄ics is a discrete system defined as

H̄ics :=
(

(E + BH F)eAH h (E + BH F)BH

C̄H C̄H BH

)

(B∗
H Q0 BH )

− 1
2 .

(5.53)

Here F and Q0 are as defined in Lemma 5.4.10.

2. H̄ics defined in (5.53) is inner i.e. H̄∼
ics H̄ics = I .

Proof. If assumptions A6–A8 are satisfied then H̀i ∈ H∞ exists by Lemma 5.4.7.

Using Lemma 5.4.10, we have

H̀i(z) =
[

AH BH

CH 0

]

[

z I −(E + BH F)
]

ZJ0+

where Z := (B∗
H Q0 BH )

− 1
2 . Using (5.23), we have

H̀i(z) = CH eAH τ
(

I + (z I − (E + BH F)eAH h)−1(E + BH F)
)

BH Z

The rest of the proof of the part 1 is similar to the proof of Lemma 5.4.11.

Since V̀ ∼
H V̀H is an orthogonal projection onto the space (Ker V̀ ∼

H V̀H )
⊥ =

Im C̄H 6= 0 (see Lemma 5.4.11), we have V̀ ∼
H V̀H H̄ics = H̄ics . Now,

H̄∼
ics H̄ics = H̄∼

ics V̀ ∼
H V̀H H̄ics = H̀∼

i H̀i = I

as V̀H 6= 0 (see Remark 5.4.12).
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Note that in the above result, assumptions A6–A8 are required for existence

of inner H̀i ∈ H∞ and non-zero V̀H .

Since the factorization of H̀ and H̀i contains the same hold V̀H (see lemmas

5.4.11 and 5.4.13), we can expect some relationship between the discrete systems

H̄cs and H̄ics . Indeed.

Lemma 5.4.14. Let assumptions A6–A8 be satisfied. Also, let V̀H and H̄cs be as

in Lemma 5.4.11 and H̄ics be as in Lemma 5.4.13. Then,

H̄cs = H̄ics H̄o

Proof. See Appendix 5.C (page 183).

We define

H̀+ := H̄−1
o H̀∼

i (5.54a)

H̄+
cs := H̄−1

o H̄∼
ics (5.54b)

Note that by definition H̀+ and H̄+
cs exist (in L∞) iff inner H̀i and (bistable and

bicausal) H̄o in H∞ exist (see also Lemma 5.4.13). Also, the existence of H̀i and

H̄o in H∞ is guaranteed by assumptions A6–A8 (see Lemma 5.4.7). Now, using

Lemma 5.4.13, we have

H̀+ = H̄−1
o H̀∼

i = H̄−1
o H̄∼

ics V̀ ∼
H

= H̄+
cs V̀ ∼

H

Now, using H̀ = V̀H H̄cs = H̀i H̄o , we have the following result which states

the equivalence of (I − H̀i H̀
∼
i ). These equivalences are useful later in simplifying

the condition (I − H̀i H̀
∼
i )Ğv ∈ L∞.

Corollary 5.4.15. Let assumptions A6–A8 be satisfied. Also, let V̀H and H̄cs be

as in Lemma 5.4.11 and H̄ics be as in Lemma 5.4.13. Now,

I − H̀i H̀
∼
i = I − H̀ H̀+ = I − V̀H H̄cs H̄+

cs V̀ ∼
H = I − V̀H H̄ics H̄∼

ics V̀ ∼
H

(5.55)

where H̀+ and H̄+
cs are as defined in (5.54).

Proof. Since H̀ = V̀H H̄cs = H̀i H̄o = V̀H H̄ics H̄o, we have

I − H̀ H̀+ = I − V̀H H̄cs H̄+
cs V̀ ∼

H

= I − V̀H H̄ics H̄o H̄−1
o H̄∼

ics V̀ ∼
H = I − V̀H H̄ics H̄∼

ics V̀ ∼
H

= I − H̀i H̀
∼
i
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Our main aim is to check the condition (I − H̀i H̀
∼
i )Ğv ∈ L∞ linearly. For

this purpose, we use the relationship I − H̀i H̀
∼
i = I − V̀H H̄cs H̄+

cs V̀ ∼
H to obtain a

simplification of the condition (I − H̀i H̀
∼
i )Ğv ∈ L∞ in the following lemma.

Lemma 5.4.16. Let assumptions A6–A8 be satisfied. If Ğv is causal then the

condition (I − H̀i H̀
∼
i )Ğv ∈ L∞ is satisfied iff (I − H̄cs H̄+

cs )V̀
∼
H Ğv ∈ L∞ and

(I − V̀H V̀ ∼
H )Ğv ∈ H∞.

Proof. See Appendix 5.C (page 184).

Although Lemma 5.4.16 simplified the condition (I − H̀i H̀
∼
i )Ğv ∈ L∞ a little,

still the construction of H̄+
cs depends upon H̀i (see (5.54)). Since the construction

of H̀i requires a Riccati equation, our purpose is not yet fulfilled. To this end, we

define a perpendicular H̄⊥
cs and a left-inverse H̄⊥

cs of H̄cs .

Definition 5.4.17. A perpendicular H̄⊥
cs and a left inverse H̄ L

cs of a discrete system

H̄cs given by (5.52), are the discrete systems which satisfy

[

H̄ L
cs

H̄⊥
cs

]

H̄cs =
[

I

0

]

Perpendicular and left inverse are not necessarily unique. For example, we can

take H̄⊥
cs = 0. I − H̄cs H̄+

cs is also a perpendicular and H̄+
cs is a left inverse of H̄cs

given by (5.52). This is because

(I − H̄cs H̄+
cs )H̄cs = H̄cs − H̄cs H̄−1

o H̄∼
ics H̄ics H̄o = 0. (5.56)

where we used Lemma 5.4.13 and (5.54). Similarly,

H̄+
cs H̄cs = H̄−1

o H̄∼
ics H̄ics H̄o = I .

As mentioned earlier the construction of I − H̄cs H̄+
cs and H̄+

cs needs a Riccati

equation. However, we need to construct a perpendicular and a left inverse of

discrete system H̄cs without a Riccati equation. There is a standard method to

explicitly write a left inverse H̄ L
cs and perpendicular H̄⊥

cs of H̄cs which does not

requires a Riccati equation. For that method, we need the condition that the feed-

through term of H̄cs i.e. C̄H BH be left invertible. The following lemma shows that

it is indeed true under our assumptions.

Lemma 5.4.18. If assumption A7 and A8 are satisfied then C̄H BH is left invert-

ible.

Proof. Since (AH ,CH ) is observable (Assumption A8), using (5.48) we have

C̄∗
H C̄H =

∫ h

0

eA∗
H τC∗

H CH eAH τ dτ > 0.

Therefore, B∗
H C̄∗

H C̄H BH > 0 as BH is full column rank (Assumption A7). This

implies C̄H BH has full column rank.
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Now, we write a left inverse H̄ L
cs and a perpendicular H̄⊥

cs of H̄cs without any

Riccati equation.

Lemma 5.4.19. If assumption A7 and A8 are satisfied then C̄H BH is left invert-

ible and there exists an invertible matrix D̄§ :=
[

D̄+

D̄⊥

]

such that D̄§C̄H BH =
[

I

0

]

.

Now,

1. A left inverse H̄ L
cs and a perpendicular H̄⊥

cs of H̄cs given by (5.52) exist and

they are given by

[

H̄ L
cs

H̄⊥
cs

]

=





Al EeAH h BH D̄+ + Lcs D̄⊥

− D̄+C̄H D̄+

−D̄⊥C̄H D̄⊥





where Al := EeAH h − EeAH h BH D̄+C̄H − Lcs D̄⊥C̄H and Lcs is a matrix

chosen in such a way that all modes of EeAH h − EeAH h BH D̄+C̄H which

are detectable from D̄⊥C̄H are stabilized.

2. H̄⊥
cs defined above is in H∞.

3. the eigenvalues of EeAH h − EeAH h BH D̄+C̄H which are unobservable from

D̄⊥C̄H are the invariant zeros of the realization of H̄cs .

Proof. Note that C̄H BH is left invertible by Lemma 5.4.18. Therefore there exists

an invertible matrix D̄§ such that D̄§C̄H BH =
[

I

0

]

. The proof of 1 and 2 is

standard (see for example [26, §A.8.3]).

The invariant zeros of a left invertible system H̄cs given by (5.52) are those

values of z ∈ C where the matrix

[

EeAH h − z I EeAH h BH

C̄H C̄H BH

]

looses its normal rank. The rest of the proof of 3 is similar to the proof of [26, claim

A.34].

In Lemma 5.4.19(1), Lcs is chosen in such a way that D̄⊥C̄H (z I − Al)
−1

is a stable discrete system. Note that matrix Al is not necessarily Schur. The

importance of Lemma 5.4.19(3) will be more clear in Lemma 5.4.27.

Remark 5.4.20. In Lemma 5.4.19, H̄⊥
cs is in H∞. However, it is not necessary

that the left inverse H̄ L
cs is in H∞. This is because EeAH h − EeAH h BH D̄+C̄H −

Lcs D̄⊥C̄H may have some unstable eigenvalues (i.e. eigenvalues having modulus

greater than one) that are observable from D̄+C̄H . However, under some assump-

tions H̄ L
cs can be constructed stable. In the sequel we do not need stability of H̄ L

cs ,

therefore we do not delve into this interesting topic (for details see [26, §A.8.3]).

Note that by construction of Lcs , we did not face this problem for H̄⊥
cs .
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Although the above constructed H̄⊥
cs and (I − H̄cs H̄+

cs ) are such that H̄⊥
cs H̄cs =

0 and (I − H̄cs H̄+
cs )H̄cs = 0, it is not necessary that H̄⊥

cs = I − H̄cs H̄+
cs in gen-

eral. However, there exists a relation between I − H̄cs H̄+
cs and H̄⊥

cs given by the

following lemma.

Lemma 5.4.21. If assumptions A6–A8 are satisfied then there exists a left invert-

ible system W̄cs ∈ L∞ such that

W̄cs H̄⊥
cs = I − H̄cs H̄+

cs

Proof. See Appendix 5.C (page 184).

Remark 5.4.22. H̄⊥
cs V̀ ∼

H maps the image of H̀ to zero as

H̄⊥
cs V̀ ∼

H H̀ = H̄⊥
cs H̄cs = 0.

However, H̄⊥
cs V̀ ∼

H does not represent all perpendicular systems of hold H̀ . Indeed

one such perpendicular is I − H̀i H̀
∼
i . Using (5.55), we have

I − H̀i H̀
∼
i = I − V̀H H̄cs H̄+

cs V̀ ∼
H

= I − V̀H (I − W̄cs H̄⊥
cs )V̀

∼
H

= I − V̀H V̀ ∼
H + V̀H W̄cs H̄⊥

cs V̀ ∼
H (5.57)

In general, I − V̀H V̀ ∼
H 6= 0 (see Lemma 5.4.11). Hence, H̄⊥

cs V̀ ∼
H does not represent

all operators perpendicular to H̀ .

For example, let H̀ =
[

1 1

1 0

]

[

1 0
]

, then H̄cs =
√

e2h−1
2

(

0 0

1 1

)

and

V̀H = eτ
√

2
e2h−1

. Therefore D̄⊥ = 0, hence H̄⊥
cs = 0, but clearly I − V̀H V̀ ∼

H 6= 0.

Using Lemma 5.4.21, the condition (I − H̀i H̀
∼
i )Ğv ∈ L∞ can be further sim-

plified as explained in the following theorem.

Theorem 5.4.23. Let assumptions A6–A8 be satisfied. Also let H̄⊥
cs be as in

Lemma 5.4.19 and V̀H be as in Lemma 5.4.11. If Ğv is causal, then the condition

(I − H̀i H̀
∼
i )Ğv ∈ L∞ is satisfied iff H̄⊥

cs V̀ ∼
H Ğv ∈ H∞ and (I − V̀H V̀ ∼

H )Ğv ∈ H∞.

Proof. See Appendix 5.C (page 185).

Still it is not clear that Theorem 5.4.23 offers any advantage or not. However,

since V̀H is a zero order hold and H̄⊥
cs can constructed in finite steps (as demon-

strated in Lemma 5.4.19), the conditions H̄⊥
cs V̀ ∼

H Ğv ∈ H∞ and (I − V̀H V̀ ∼
H )Ğv ∈

H∞ requires no Riccati equation. Thus, we avoided the Riccati equation needed if

we directly check (I − H̀i H̀
∼
i )Ğv ∈ L∞ using STPBC of H̀i.
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Simple equations to check the condition (I − H̀i H̀
∼
i
)Ğv ∈ L∞

In this section, we use Theorem 5.4.23 to obtain simple equations to check the

condition (I − H̀i H̀
∼
i )Ğv ∈ L∞. If Ğv belongs to H∞ then the condition (I −

H̀i H̀
∼
i )Ğv ∈ L∞ (with constraint that Ğv is causal) is trivially satisfied. Therefore,

we can add or subtract any L∞ system from (I − H̀i H̀
∼
i )Ğv without any loss of

generality. The following lemma explains this idea.

Lemma 5.4.24. Assume that causal Ğv has STPBC given in (5.42). Now, (I −
H̀i H̀

∼
i )Ğv ∈ L∞ is equivalent to (I − H̀i H̀

∼
i )Ğu ∈ L∞ where Ğu is causal and it

is given by STPBC

Ğu =
[

Au Bu

Cvu 0

]

[

z I −I
]

(5.58)

Proof. The proof follows from the fact that Ğv = Ğu + Ğs and (I − H̀i H̀
∼
i )Ğs ∈

L∞ where

Ğs =
[

As Bs

Cvs 0

]

[

z I −I
]

∈ H∞.

Also, it follows from Theorem 5.4.23 that if Ğu is causal then the condition

(I − H̀i H̀
∼
i )Ğu ∈ L∞ is satisfied iff H̄⊥

cs V̀ ∼
H Ğu ∈ H∞ and (I − V̀H V̀ ∼

H )Ğu ∈ H∞.

We first write a simple equation to check the condition (I − V̀H V̀ ∼
H )Ğu ∈ H∞.

For obtaining the equation, we need the following standard but important result

(written here for reference purpose).

Lemma 5.4.25. If (A, B) is controllable, then

1. (Au, Bu) is controllable.

2. (eAu h, B̄u) is controllable where B̄u is a matrix that satisfies

B̄u B̄∗
u =

∫ h

0

eAuτ Bu B∗
u eA∗

uτ dτ =
∫ h

0

eAu(h−τ )Bu B∗
u eA∗

u(h−τ ) dτ. (5.59)

Proof. Suppose (A, B) is controllable. Hence
[

A − λI B
]

has full row rank for

all λ ∈ C. Then
[

As − λI 0 Bs

0 Au − λI Bu

]

has full row rank for all λ ∈ C.

Clearly
[

Au − λI Bu

]

has full row rank as well.

Now, if (Au, Bu) is controllable then
∫ h

0 eAuτ Bu B∗
u eA∗

uτ dτ = B̄u B̄∗
u > 0 [71].

This implies that B̄u has full row rank. Hence,
[

eAu h − λI B̄u

]

has full row rank

for all λ ∈ C.

The two integrals in (5.59) are equivalent as Bu is a constant matrix.
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We start with the condition (I − V̀H V̀ ∼
H )Ğu ∈ H∞ first.

Lemma 5.4.26. Let Ğu be as in (5.58). Let C̄H , B̄u and C̄vu satisfy (5.48), (5.59)

and

C̄∗
vuC̄vu =

∫ h

0

eA∗
uτC∗

vuCvueAuτ dτ, (5.60)

respectively. Now, if (A, B) is controllable then (I − V̀H V̀ ∼
H )Ğu ∈ H∞ iff

C̄∗
vuC̄vu − P∗

u (C̄
∗
H C̄H )

+ Pu = 0

where Pu is given by

Pu =
∫ h

0

eA∗
H τC∗

H CvueAuτ dτ

and the zero order hold V̀H is defined in Lemma 5.4.11.

Proof. See Appendix 5.C (page 185).

Now, we simplify the condition H̄⊥
cs V̀ ∼

H Ğv ∈ L∞. To this end, we need the

following assumption.

Assumption A9 : No pole of Ğv in the region |z| ≥ 1 is a zero of the discrete

system H̄cs .

The poles of Ğv in the region |z| ≥ 1 are the eigenvalues of eAu h . Also note

that the eigenvalues of EeAH h − EeAH h BH D̄+C̄H which are unobservable from

D̄⊥C̄H are the invariant zeros of the H̄cs (see Lemma 5.4.19(3)). Therefore, by

Assumption A9 and the suitable choice of Lcs (see Lemma 5.4.19), Al and eAu h

have no common eigenvalues. This is required in the following lemma which helps

in simplifying the condition H̄⊥
cs V̀ ∼

H Ğu ∈ H∞.

Lemma 5.4.27. Let assumptions A7–A8 be satisfied. Let H̄⊥
cs be as in Lemma

5.4.19. If (A, B) is controllable then H̄⊥
cs V̀ ∼

H Ğu ∈ H∞ iff there exist a matrix Xl

that satisfies the following linear equations

(

EeAH h − EeAH h BH D̄+C̄H

)

Xl − Xle
Au h + EeAH h BH D̄+ = 0

−D̄⊥C̄H Xl + D̄⊥(C̄∗
H )

+ Pu = 0

Proof. See Appendix 5.C (page 187).

Combining Lemma 5.4.27 and 5.4.26, we can write the following theorem:
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Theorem 5.4.28. Let assumptions A6–A8 be satisfied. Also let C̄vu , Pu , C̄H be

as in Lemma 5.4.26 and D+, D⊥ as in Lemma 5.4.19. If (A, B) is controllable

and Ğv is causal then (I − H̀i H̀
∼
i )Ğv ∈ L∞ iff

C̄∗
vuC̄vu − P∗

u (C̄
∗
H C̄H )

+ Pu = 0 (5.61)

and there exists an Xl that satisfies the following linear equations

(

EeAH h − EeAH h BH D̄+C̄H

)

Xl − Xle
Au h + EeAH h BH D̄+ = 0 (5.62a)

−D̄⊥C̄H Xl + D̄⊥(C̄∗
H )

+ Pu = 0 (5.62b)

Proof. Follows from Theorem 5.4.23 and lemmas 5.4.26 and 5.4.27.

Remark 5.4.29. If Assumption A8 is satisfied then the condition given in (5.61)

can be further simplified as explained below. Note that

∫ h

0

eA∗
u H τC∗

u H Cu H eAu H τdτ =
[

C̄∗
vuC̄vu P∗

u

Pu C̄∗
H C̄H

]

where Au H :=
[

Au 0

0 AH

]

and Cu H :=
[

Cvu CH

]

. If Assumption A8 is sat-

isfied then C̄∗
H C̄H > 0. Hence, (C̄∗

H C̄H )
+ = (C̄∗

H C̄H )
−1. Using (5.61) and

invertibility of C̄∗
H C̄H , we have (see [71, §2.3])

rank

[

C̄∗
vuC̄vu P∗

u

Pu C̄∗
H C̄H

]

= rank

[

C̄∗
vuC̄vu − P∗

u (C̄
∗
H C̄H )

−1 Pu 0

0 C̄∗
H C̄H

]

= rank C̄∗
H C̄H = dim AH .

Here dim AH means number of rows of the square matrix AH . This implies that

the condition given in (5.61) is satisfied iff

rank

∫ h

0

eA∗
u H τC∗

u H Cu H eAu H τdτ = dim AH .

Now, rank
∫ h

0 eA∗
u H τC∗

u H Cu H eAu H τdτ is equal to the rank of the observability ma-

trix associated with pair (Cu H , Au H ) (see [71, theorem 3.3,3.8]). Therefore, the

condition given in (5.61) can be verified just by showing that the rank of the ob-

servability matrix associated with pair (Cu H , Au H ) is equal to dim AH .

Theorem 5.4.28 is important because here we check (I − H̀i H̀
∼
i )Ğv ∈ L∞

with just a few linear equations. We do not need to solve a Riccati equation here to

obtain H̀i. The eigenvalue split of Ğv required in Theorem 5.4.28 is also required

if we directly check (I − H̀i H̀
∼
i )Ğv ∈ L∞ with STPBC of H̀i. Therefore, certainly

we gain something by using Theorem 5.4.28. Let us consider an example now.
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Example 5.4.30. Consider LCTI systems Gv and Gy given in the Laplace domain

by Gv(s) =
[

1
s

0
]

and Gy(s) =
[

1
s

ǫ
]

where ǫ > 0.

The STPBC of Gv and Gy is given by

[

Ğv(z)

Ğy(z)

]

=





0 1 0

1 0 0

1 0 ǫ





[

z −1
]

.

We also assume that the hold is the ideal zero order hold given by

H̀iz(z) =
[

0 1

1 0

]

[

1 0
]

J0+

The first thing we need to check is the condition (I − H̀i H̀
∼
i )Ğv ∈ L∞ (see Propo-

sition 5.2.2) for the existence of a solution of Problem P5 where H̀i is the inner

factor of hold H̀iz. In Theorem 5.4.28, we saw that this condition can be checked

without constructing the inner factor H̀i. In this example, C̄vu = C̄H =
√

h,

Pu = h, E = 0, D̄+ = 1√
h

and D̄⊥ = 0. As required in Theorem 5.4.28,

C̄∗
vuC̄vu − P∗

u (C̄
∗
H C̄H )

+ Pu = h − h = 0

and Xl = 0 satisfies (5.62).

5.4.5 The condition (I − H̀i H̀
∼
i )Ğv ∈ L2

We also need to check the condition (I − H̀i H̀
∼
i )Ğv ∈ L2 (see Proposition 5.2.5)

for the existence of a solution of Problem P5. To this end Lemma 5.3.23 and

Remark 5.3.24 are very useful and applied in the following result.

Corollary 5.4.31. Let system Ğ and H̀ are given by STPBC (5.42) and (5.43)

respectively. Then (I − H̀i H̀
∼
i )Ğv ∈ L∞ implies (I − H̀i H̀

∼
i )Ğv ∈ L2.

Proof. Since the direct feed through term of Ğv is 0, the STPBC of (I − H̀i H̀
∼
i )Ğv

has zero direct feed-through term. Therefore, it follows from Lemma 5.3.23 and

Remark 5.3.24 that if (I − H̀i H̀
∼
i )Ğv ∈ L∞ then (I − H̀i H̀

∼
i )Ğv ∈ L2.

Causality of Ğv does not play a role in Corollary 5.4.31. This is because once

it proved that (I − H̀i H̀
∼
i )Ğv ∈ L∞ with any constraint (here Ğv is causal) then

(I − H̀i H̀
∼
i )Ğv ∈ L2 with the same constraint.

5.4.6 Obtaining V́

Now, we concentrate on showing the existence of a V́ ∈ L∞ such that Ḿh :=
H̀∼

i M̆v − V́ M̆y ∈ H∞ (see Proposition 5.2.2). In this section, we show that

V́ (z) = J ∗
0+

[ −A∗
H P(τ )L Z−1

y

−(BH Z)∗ 0

]

[

z(E + BH F)∗ −I
]

(5.63)
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is in L∞ and it is such that Ḿh ∈ H∞, where P(τ ) is the solution of Sylvester

differential equation

Ṗ(τ )+ A∗
H P(τ )+ P(τ )A + C∗

H Cv = 0, (5.64)

with boundary condition (E + BH F)∗ P(0) = −P(h).

Remark 5.4.32. This STPBC of V́ is not brute force. It can be obtained by con-

structing a rational function of H̀∼
i M̆v M̆−1

y (with time varying co-efficient). Even

though H̀∼
i M̆v M̆−1

y may have no convergence for all z ∈ Z (this can happen if re-

gion of convergence (ROC) of H̀∼
i and ROC of M̆v M̆−1

y have empty intersection),

but still as a rational H̀∼
i M̆v M̆−1

y has some meaning. Doing partial fraction

H̀∼
i M̆v M̆−1

y = P
H̀∼

i
+ P

M̆v M̆−1
y

where P
H̀∼

i
contains the poles (outside unit circle) of H̀∼

i and P
M̆v M̆−1

y
contains

the poles (inside unit circle) of M̆v M̆−1
y , the desired V́ can be obtained by taking

V́ = P
H̀∼

i
. Since the poles of P

H̀∼
i

are outside unit circle, V́ is stable if it is

anti-causal. Also

Ḿh := H̀∼
i M̆v − V́ M̆y = (H̀∼

i M̆v M̆−1
y − V́ )M̆y = P

M̆v M̆−1
y

M̆y.

It can be shown that this Ḿh is stable and causal.

First, we show that Sylvester differential equation (5.64) with boundary condi-

tion (E + BH F)∗ P(0) = −P(h) has a solution. To this end, following Lemma is

useful.

Lemma 5.4.33. If Assumption A9 (given at page 153) is satisfied then no pole of

H̀∼
i in the region |z| ≥ 1 is a pole of Ğv.

Proof. Similar to H̀ = V̀H H̄cs in Lemma 5.4.11, we can write H̀i = V̀H H̄ics

where

H̄ics :=
(

(E + BH F)eAH h (E + BH F)eAH h BH

C̄H C̄H BH Z

)

Since H̄o is bicausal and bistable, it will not have zeros in the region |z| ≥ 1.

Therefore, a zero of H̄cs in the region |z| ≥ 1 is a zero of H̄ics . Now H̀∼
i =

H̄∼
ics V̀ ∼

H . As V̀ ∼
H is a sampler with no poles, the poles of H̀∼

i are the poles of

H̄∼
ics . Also, since H̄∼

ics H̄ics = I , the poles of H̄∼
ics are the zero of H̄ics . Therefore,

Assumption A9 can be restated as ”no pole of H̀∼
i in the region |z| ≥ 1 is a pole

of Ğv (or Ğu)”.

We use the above Lemma to show that Sylvester differential equation (5.64)

with boundary condition (E + BH F)∗ P(0) = −P(h) has a solution.
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Lemma 5.4.34. If Assumption A9 is satisfied, a unique solution P(τ ) of the differ-

ential Sylvester equation (5.64) with the boundary condition (E + BH F)∗ P(0) =
−P(h) exists and it is given by

P(τ ) = e−A∗
H τ P0e−Aτ − R3(τ ),

where

R3(τ ) :=
∫ τ

0

e−A∗
H τ1C∗

H Cve
−Aτ1dτ1

and P0 is the unique solution of Sylvester equation

P0 = eA∗
H h
(

−(E + BH F)∗ P0 + R3(h)
)

eAh . (5.65)

Proof. From Lemma 5.4.9, the solution of (5.64) with boundary condition P(0) =
P0 is given by

P(τ ) = R1(τ )P0 R2(τ )− R3(τ )

where R1(τ ) := e−A∗
H τ and R2(τ ) := e−Aτ . Using above and the boundary

condition (E + BH F)∗ P(0) = −P(h), we have

P(h) = R1(h)P0 R2(h)− R3(h) = −(E + BH F)∗ P0

this implies

P0 = −R1(h)
−1(E + BH F)∗ P0 R2(h)

−1 + R1(h)
−1 R3(h)R2(h)

−1

The unique solution of the above discrete Sylvester equation exists by Lemma

5.4.33.

Now, we show that V́ defined in (5.63) is in L∞.

Lemma 5.4.35. V́ defined in (5.63) is in L∞.

Proof. Since the P(τ ) exists and continuous (hence, bounded), and (E+BH F)eAh

is Schur, it follows from Remark 5.3.19 and Lemma 5.3.18 that V́ ∈ L∞.

Now, we show that this V́ ∈ L∞ is such that Ḿh := H̀∼
i M̆v − V́ M̆y ∈ H∞.

Lemma 5.4.36. If V́ is as defined in (5.63) then Ḿh := H̀∼
i M̆v − V́ M̆y ∈ H∞ and

Ḿh(z) = J ∗
0+

[

A + LCy L

−(BH Z)∗ P0 0

]

[

z I −I
]

(5.66)

Proof. See Appendix 5.C (page 189).
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5.4.7 Optimal relaxed causal sampler

In this section, we write a STPBC for optimal relaxed causal sampler described

in Proposition 5.2.5. For the solution described in Proposition 5.2.5, we need

H̀∼
i N̆v N̆∼

y − V́ . Following corollary show how to obtain a compact STPBC for

this.

Corollary 5.4.37. Define A p :=
[

−A∗
H −C∗

H Cv X

0 −A∗
L

]

, Bp :=
[−P(τ )L Z−1

y

(Z yCy)
∗

]

,

�p :=
[

(E + BH F)∗ 0

0 I

]

, and C p :=
[−(BH Z)∗ 0

]

. Now

H̀∼
i (z)N̆v(z)N̆

∼
y (z)− V́ (z) =J ∗

0+

[

A p Bp

C p 0

]

[

z�p −I
]

Proof. See Appendix 5.C (page 190).

Now, we have all component to write the optimal relaxed causal sampler de-

scribed in Proposition 5.2.5.

Theorem 5.4.38. Let system Ğ and H̀ are given by STPBC (5.42) and (5.43)

respectively. Let assumptions A4-A9 be satisfied. If the conditions given in The-

orem 5.4.28 are satisfied then

Śopt := arg inf
Ś∈zl H∞

‖Ğv − H̀ ŚĞy‖L2 = H̄−1
o (Śα,opt M̆y − Ḿh)

where Śα,opt := projzl H2(H̀∼
i N̆v N̆∼

y − V́ ) has STPBC

Śα,opt(z) = J ∗
0+

[

A p Bp

C p

(

I − (ze−Ap h�p)
l+1
)

0

]

[

�p −I
]

where A p, Bp, �p, and C p are defined in Corollary 5.4.37.

Proof. See Appendix 5.C (page 191).

Theorem 5.4.38 says that strictly causal sampler (i.e. l = −1) is given by

−H̄−1
o Ḿh as H̀∼

i N̆v N̆∼
y and V́ are anti-causal.

Remark 5.4.39. Note that the causality (strictly speaking lifted causality) of a

sampler is not equivalent to input/output causality (see Section 2.5 for detail).

5.4.8 Optimal H2 norm

In this section we provide a simple algebraic expression to calculate the optimal

error norm ‖Ğe,opt‖L2 for signal generator Ğ given in (5.41) and hold H̀ given in

(5.43). It is given in (5.6) that

‖Ğe,opt‖2

L2 := ‖Ğv − H̀ ŚoptĞy‖2

L2 = ‖Ğv + H̀i ḾhĞy‖2

L2 − ‖Śα,opt‖2

L2
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where Śopt is given in Theorem 5.4.38 and

‖Śα,opt‖2

L2 = ‖ projzl H2(H̀∼
i N̆v N̆∼

y − V́ )‖2

L2 (5.67)

The squared L2 norm of Śα,opt can also be written as

‖Śα,opt‖2

L2 = ‖H̀∼
i N̆v N̆∼

y − V́ ‖2

L2 − ‖ projL2\zl H2(H̀∼
i N̆v N̆∼

y − V́ )‖2

L2 (5.68)

It is shown later that it is easier to calculate ‖Śα,opt‖L2 using (5.68) than (5.67).

Now, we obtain STPBC of all systems required to calculate ‖Ğe,opt‖L2 . Using

Corollary 5.4.37, the STPBC of sampler H̀∼
i N̆v N̆∼

y − V́ is given by

H̀∼
i (z)N̆v(z)N̆

∼
y (z)− V́ (z) =J ∗

0+

[

A p Bp

C p 0

]

[

z�p −I
]

(5.69)

where A p, Bp, �p, and C p are defined in Corollary 5.4.37. Proceeding as in the

proof Theorem 5.4.38, we have

projL2\zl H2(H̀∼
i N̆v N̆∼

y − V́ ) := J ∗
0+

[

A p BP

C p(ze−Aph�p)
l+1 0

]

[

z�p −I
]

(5.70)

Note that H̀i is a sampler and Ḿh is a sampler, therefore to obtain the STPBC of

Ğv + H̀i ḾhĞy, we need the STPBC of H̀i Ḿh. Using Lemma 5.3.32, (5.50) and

(5.66), the STPBC of H̀i Ḿh is given by

H̀i(z)Ḿh(z) =





AH 0 0

0 A + LCy L

CH 0 0





[

z

[

I M1

0 I

]

−
[

(E + BH F) 0

0 I

]]

=





AH 0 0

0 A + LCy L

CH 0 0





[

z

[

I 0

0 I

]

−
[

(E + BH F) −M1

0 I

]
]

(5.71)

where

M1 := −BH Z(BH Z)∗ P0. (5.72)

Now, the STPBC of Ğv + H̀i ḾhĞy is obtained in the following lemma.

Lemma 5.4.40. Let the STPBC of Ğ =
[

Ğv

Ğy

]

, Ḿh and H̀i are given by (5.41),

(5.66) and (5.50) respectively. Then, the STPBC of the system Ğv + H̀i ḾhĞy is
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given by

Ğv(z)+ H̀i(z)Ḿh(z)Ğy(z) =
[

Ae Be

Ce 0

]

[

z I −ϒe

]

(5.73)

where

Ae :=





AH 0 0

0 A + LCy 0

0 0 A



 , Be :=





0

B + L Dy

B





Ce :=
[

CH 0 Cv
]

, ϒe :=





E + BH F −M1 M1

0 I 0

0 0 I





Proof. Define ϒλ :=
[

(E + BH F) −M1

0 I

]

. Using the STPBC of H̀i(z)Ḿh(z)

given in (5.71),

Ğv(z)+ H̀i(z)Ḿh(z)Ğy(z) =
[

I H̀i(z)Ḿh(z)
]

[

Ğv(z)

Ğy(z)

]

and

[

I H̀i(z)Ḿh(z)
]

=





AH 0 0 0

0 A + LCy 0 L

CH 0 I 0





[

z I −ϒλ
]

[

Ğv(z)

Ğy(z)

]

=





A B

Cv 0

Cy Dy





[

z I −I
]

,

the result follows from the product of STPBC, the state-transformation using

T :=





I 0 0

0 I I

0 0 I



 ,

and multiplying the boundary condition from left by T .

Since Ğv + H̀i ḾhĞy is causal and in L∞, it is in H∞. By Lemma 5.3.23, this

further implies Ğv + H̀i ḾhĞy ∈ H2. However, in the following theorem we show

that the STPBC of the system Ğv + H̀i ḾhĞy given in (5.73) is not minimal. It

contains unobservable or uncontrollable poles that lie outside (open) unit disc of

the complex plane. Since Ğv + H̀i ḾhĞy ∈ H∞, this implies these poles must be

canceled somehow. This complicates the calculation of H2 norm of Ğv + H̀iḾhĞy

as shown in the following lemma.
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Lemma 5.4.41. Let Ğv is given by STPBC (5.42). Let the matrix functions 3 and

Ŵ be as in Lemma 5.3.29. Also let Ae, Be, ϒe and Ce be as in (5.73). Let C̄e and

B̄e be any matrices which satisfy

C̄∗
e C̄e =

∫ h

0

eA∗
e sC∗

e CeeAesds = 3∗
22(Ae,Ce)312(Ae,Ce) (5.74a)

B̄e B̄∗
e =

∫ h

0

eAes Be B∗
e eA∗

e sds = Ŵ∗
33(Ae, Be)Ŵ23(Ae, Be) (5.74b)

respectively. Define for τ ∈ [0, h)

D̆eŭ :=
∫ h

0

CeeAe(τ−σ)Be1(τ − σ)ŭ(σ )dσ (5.75)

then

‖D̆e‖2
H S = tr Ce

∫ h

0

∫ t

0

eAes Be B∗
e eA∗

e sdsdt C∗
e

= tr CeŴ
∗
33(Ae, Be)Ŵ13(Ae, Be)C

∗
e . (5.76)

Let us partition M1 defined in (5.72) as
[

M1s M1u

]

according to As and Au , and

define

Ams :=





(E + BH F)eAH h −M1e(A+LCy )h M1seAs h

0 e(A+LCy)h 0

0 0 eAs h



 .

Also let us partition

ϒe B̄e =:

[

B̄ms

B̄mu

]

, C̄e =:
[

C̄ms C̄mu

]

according to Ams and eAu h . Then

‖Ğv + H̀i ḾhĞy‖2

H2 = 1

h
‖D̆e‖2

H S + 1

h
tr(C̄∗

msC̄ms Wec) (5.77)

= 1

h
‖D̆e‖2

H S + 1

h
tr(Weo(B̄ms − Xm B̄mu)(B̄ms − Xm B̄mu)

∗) (5.78)

where Wec and Weo are matrices satisfying the Lyapunov equations

Wec = Ams Wec A∗
ms + (B̄ms − Xm B̄mu)(B̄ms − Xm B̄mu)

∗,

Weo = A∗
ms Weo Ams + C̄∗

msC̄ms

and Xm satisfies the Sylvester equation

Xm = Ams Xme−Au h +





M1u

0

0



 . (5.79)
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Proof. See Appendix 5.C (page 192).

H̀∼
i N̆v N̆∼

y − V́ and projL2\zl H2(H̀∼
i N̆v N̆∼

y − V́ ) are anti-causal systems in

L∞, therefore their conjugates are in H∞. Hence, their H2 norm can be obtained

by Lemma 5.3.26. Since ‖zl Ğ‖L2 = ‖Ğ‖L2 for a system Ğ, L2 norm of the system

projL2\zl H2(H̀∼
i N̆v N̆∼

y − V́ ) can be calculated easily.

Lemma 5.4.42. Let A p, Bp, �p, and C p be as in Corollary 5.4.37. Let the STP-

BCs of the systems H̀∼
i N̆v N̆∼

y − V́ and projL2\zl H2(H̀∼
i N̆v N̆∼

y − V́ ) be given by

(5.69) and (5.70) respectively. Then

1. the L2 norm of (anti-causal) sampler H̀∼
i N̆v N̆∼

y − V́ is given by

‖H̀∼
i N̆v N̆∼

y − V́ ‖2

L2 = 1

h
tr(B̄p B̄∗

pWsc) = 1

h
tr(WsoC∗

pC p)

where Wsc and Wso are matrices satisfying the Lyapunov equations

Wsc = �∗
pe−A∗

ph Wsce−Aph�p + C̄∗
pC̄ p,

Wso = e−Aph�pWso�
∗
pe−A∗

ph + B̄p B̄∗
p

and B̄p is any matrix satisfying

B̄p B̄∗
p =

∫ h

0

e−Apτ Bp(τ )Bp(τ )
∗e−A∗

pτdτ

= Pz3
∗
22(A

∗
z , B∗

z )312(A
∗
z , B∗

z )P
∗
z

in which

Az :=





AH C∗
H Cv X C∗

H Cv
0 A + LCy 0

0 0 −A



 Bz :=





0

(Z yCy)
∗

L Z−1
y





Pz :=
[

I 0 −P0

0 I 0

]

2. the L2 norm of (anti-causal) sampler projL2\zl H2(H̀∼
i N̆v N̆∼

y − V́ ) is given

by

‖ projL2\zl H2(H̀∼
i N̆v N̆∼

y − V́ )‖2

L2 = 1

h
tr(B̄p B̄∗

pWpc) = 1

h
tr(WpoC∗

pmC pm)

where C pm := C p(e
−Aph�p)

l+1 and Wpc and Wpo are matrices satisfying

the Lyapunov equations

Wpc = �∗
pe−A∗

ph Wpce−Aph�p + C̄∗
pmC̄ pm,

Wpo = e−Aph�pWpo�
∗
pe−A∗

ph + B̄p B̄∗
p
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Proof. See Appendix 5.C (page 193).

Now we summarize all of the results in this section to obtain the optimal error

norm ‖Ğe,opt‖L2 .

Theorem 5.4.43. Let system Ğ and H̀ are given by STPBC (5.42) and (5.43)

respectively. Let assumptions A4-A9 be satisfied. If the conditions given in The-

orem 5.4.28 are satisfied then the optimal error norm ‖Ğe,opt‖L2 is given by

‖Ğe,opt‖2

L2 =‖Ğv + H̀i ḾhĞy‖2

H2 − ‖H̀∼
i N̆v N̆∼

y − V́ ‖2

L2

+ ‖ projL2\zl H2(H̀∼
i N̆v N̆∼

y − V́ )‖2

L2

where ‖Ğv + H̀i ḾhĞy‖H2 is obtained in Lemma 5.4.41, and ‖H̀∼
i N̆v N̆∼

y − V́ ‖L2

and ‖ projL2\zl H2(H̀∼
i N̆v N̆∼

y − V́ )‖L2 are obtained in Lemma 5.4.42.

Proof. The proof follows from lemmas 5.4.4, 5.4.10, 5.4.41 and 5.4.42.

5.4.9 Example

In this section we consider an example to explain the theory discussed till now.

Example 5.4.44. Consider the systems Ğv, Ğy and H̀iz as in Example 5.4.30. In

this example we obtain strictly causal, causal, 1-causal and non-causal optimal

samplers given the systems Ğv, Ğy and H̀iz. It follows from Example 5.4.30 that

(I − H̀i H̀
∼
i )Ğv ∈ L∞.

Using Lemma 5.4.10, we have F = 0, Z = 1√
h

and an inner-outer factoriza-

tion of H̀iz := H̀i H̄o is given by

H̀i(z) = 1√
h

[

0 1

1 0

]

[

1 0
]

J0+, H̄o(z) =
√

h

And using Lemma 5.4.4, we have Z y = 1
ǫ , X = ǫ, and L = − 1

ǫ and

[

M̆v(z)

M̆y(z)

]

=







− 1
ǫ − 1

ǫ

1 0
1
ǫ

1
ǫ







[

z −1
]

Using Lemma 5.4.34, P(t) = h − t . From (5.63) and Lemma 5.4.36, we have

V́ (z) = J ∗
0+

[

0 −P(τ )

− 1√
h

0

]

[

0 −I
]

Ḿh(z) = J ∗
0+

[

− 1
ǫ

1
ǫ

−
√

h 0

]

[

z −1
]

.
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ψ−1(t)

1
h

1
ǫ

ψ0(t)

ψ1(t)ψ∞(t)

0

Figure 5.3: Sampling functions of optimal −1, 0, 1,∞-causal sam-

plers in Example 5.4.44

Using Corollary 5.4.37, we have

H̀∼
i (z)N̆v(z)N̆

∼
y (z)− V́ (z) =J ∗

0+

[

A p Bp

C p 0

]

[

z�p −I
]

where A p :=
[

0 −ǫ
0 1

ǫ

]

, Bp :=
[

P(τ )
1
ǫ

]

, �p :=
[

0 0

0 1

]

, and C p :=
[

− 1√
h

0
]

.

Using Theorem 5.4.38, Śα,opt := projzl H2(H̀∼
i N̆v N̆∼

y − V́ ) is given by STPBC

Śα,opt(z) = J ∗
0+

[

A p Bp

C p

(

I − (ze−Ap h�p)
l
)

0

]

[

�p −I
]

and the optimal relaxed causal sampler Śopt is given by (5.4).

Now, we write strictly causal, causal, 1-causal and non-causal optimal sam-

plers in a more tangible form.

1. Strictly causal optimization (i.e. l = −1)

Since projz−1H2{H̀∼
i N̆v N̆∼

y − V́ } = 0, we have strictly causal sampler

−H̄−1
o Ḿh which is a cascade of the LCTI causal system 1

ǫ 1/(s + 1
ǫ )1[0,∞)

and the ideal sampler. Note that the strictly causal sampler does not depend

upon h and tend to a causal impulse when ǫ → 0. Therefore, strictly causal

Śopt in time domain is a sampler given by

y[n] =
∫ ∞

−∞
ψ−1(nh − t)u(t)dt

where sampling function ψ−1 := 1
ǫ e− t

ǫ 1[0,∞). See Figure 5.3.

2. Causal optimization (i.e. l = 0)

Since H̀∼
i ∈ H∞, therefore V́ = 0 satisfies H̀∼

i M̆v−V́ M̆y ∈ H∞. Therefore,

Śα,opt = projH2(H̀∼
i N̆v N̆∼

y ).
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We find that causal Śopt in time domain is a sampler given by

y[n] =
∫ ∞

−∞
ψ0(nh − t)u(t)dt

where sampling function

ψ0(t) := 1

h











0 t ≤ −h

− 1
2
e

t
ǫ − 1

2
e− t+2h

ǫ + 1 −h < t ≤ 0
1
2
e− t

ǫ − 1
2
e− t+2h

ǫ t > 0

See Figure 5.3.

3. 1-causal optimization

Similar to causal optimization, we take V́ = 0. Therefore,

Śα,opt = projz1H2(H̀∼
i N̆v N̆∼

y ).

We find that 1-causal Śopt in time domain is a sampler given by

y[n] =
∫ ∞

−∞
ψ1(nh − t)u(t)dt

where sampling function

ψ1(t) := 1

h























0 t ≤ −2h

1
2
(−e

t
ǫ + e

t+h
ǫ − e− 4h+t

ǫ + e− 3h+t
ǫ ) −2h < t ≤ −h

1
2
(−e

t
ǫ − e− t+h

ǫ − e− 4h+t
ǫ + e− 3h+t

ǫ )+ 1 −h < t ≤ 0

1
2
(e− t

ǫ − e− t+h
ǫ − e− 4h+t

ǫ + e− 3h+t
ǫ ) t > 0

See Figure 5.3.

4. Non-causal optimization (i.e. l = ∞)

In this case,

Śα,opt = H̀∼
i N̆v N̆∼

y .

We find that non-causal Śopt in time domain is a sampler given by

y[n] =
∫ ∞

−∞
ψ∞(nh − t)u(t)dt

where sampling function

ψ∞(t) := 1

h











− 1
2
e

t
ǫ + 1

2
e

t+h
ǫ t ≤ −h

− 1
2
e

t
ǫ − 1

2
e− t+h

ǫ + 1 −h < t ≤ 0
1
2
e− t

ǫ − 1
2
e− t+h

ǫ t > 0

See Figure 5.3.
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ψǫ0(t) 1
h

0−h

Figure 5.4: Sampling function of optimal l-causal (where l ≥ 0)

sampler in Example 5.4.44 when ǫ → 0.
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Figure 5.5: Optimal error ‖Ge,opt‖L2 := ‖Gv − HSoptGy‖L2 for

different l and ǫ = 0.5.

If ǫ → 0 in this example, then ψ0(t), ψ1(t), ψ∞(t) converge to the following

ψǫ0(t) =
{

1/h −h < t ≤ 0

0 elsewhere

see Figure 5.4.

Figure 5.5 shows the optimal error ‖Ge,opt‖L2 := ‖Gv − HSoptGy‖L2 for dif-

ferent optimal relaxed causal samplers. As expected the optimal error decreases

with increasing non-causality.

5.5 Conclusions

In this chapter we obtained a stable and optimal l-causal sampler given hold and a

LCTI model G. The presence of hold H complicates the question of existence of

such a sampler when G is unstable. We also provided the conditions of existence

of optimal l-causal samplers, in (lifted) frequency domain as well as in state space
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with two point boundary condition (STPBC). We also gave the optimal l-causal

sampler in STPBC. Use of STPBC allows an easy and clear framework to solve

our problem.

5.A Proofs of the results in Section 5.2

Proof of Proposition 5.2.2. We first prove that these three criteria are necessary.

Let us assume that there exists an Ś ∈ zlH∞ such that Ğe := Ğv − H̀ ŚĞy ∈ L∞.

Condition 1: Since R :=
[

H̀∼
i

I − H̀i H̀
∼
i

]

satisfies R∼ R = I , we have

‖Ğe‖L∞ = ‖Ğv − H̀ ŚĞy‖L∞ = ‖RĞv − R H̀i H̄o ŚĞy‖L∞

=
∥

∥

∥

∥

[

H̀∼
i Ğv − H̄o ŚĞy

5
H̀

Ğv

]∥

∥

∥

∥

L∞
(5.80)

By assumption Ğe ∈ L∞, so ‖5
H̀

Ğv‖L∞ is finite.

Condition 2: Since the hold H̀ is stable and casual, we have that K̆ := H̀ Ś ∈
zl H∞ and Ğv − K̆ Ğy ∈ L∞. According to [40, proposition 2.1], the existence

of a K̆ ∈ zlH∞ that renders Ğv − K̆ Ğy ∈ L∞ is equivalent to existence of a

factorization over H∞ of Ğ of the form (5.1) with M̆y, N̆y left coprime. Note that

the coprime factorization is over H∞ not zlH∞ as we expect. This is related to the

causality of Ğ (see [29, remark 20.4] for detail).

Condition 3: Let V́ := (H̀∼
i M̆v+H̄o Ś)M̆−1

y . Then, H̀∼
i M̆v−V́ M̆y = −H̄o Ś ∈

zl H∞ as required. Hence,

V́ M̆y = H̀∼
i M̆v + H̄o Ś ∈ L∞.

Also,

V́ N̆y = (H̀∼
i M̆v + H̄o Ś)Ğy ∈ L∞

because

H̀∼
i Ğv − H̄o ŚĞy ∈ L∞, follows from (5.80)

⇒ H̀∼
i N̆v − H̀∼

i M̆vĞy − H̄o ŚĞy ∈ L∞

⇒ H̀∼
i M̆vĞy + H̄o ŚĞy ∈ L∞, as H̀∼

i N̆v ∈ L∞.

Here, we used Ğv = N̆v − M̆vĞy and Ğy = M̆−1
y N̆y which follows from (5.1).

Therefore, we have

V́
[

N̆y M̆y

]

∈ L∞

This further implies that V́ ∈ L∞ as
[

N̆y M̆y

]

is right invertible in H∞.
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Now assume that Conditions 1-3 are satisfied. We show that there exists a

sampler Ś ∈ zl H∞ such that Ğe ∈ L∞. From (5.80), a sampler Ś ∈ zlH∞ achieves

Ğe ∈ L∞ iff ‖5
H̀

Ğv‖L∞ < ∞ and ‖H̀∼
i Ğv − H̄o ŚĞy‖L∞ < ∞. From Condition

2 and 3, it is clear that we have a V́ ∈ L∞ such that Ḿh := H̀∼
i M̆v − V́ M̆y ∈ zlH∞

and Ğv = N̆v − M̆vĞy and Ğy = M̆−1
y N̆y. Now, Ś := −H̄−1

o Ḿh does the job

because Ś ∈ zlH∞ and

H̀∼
i Ğv − H̄o ŚĞy = H̀∼

i N̆v + (−H̀∼
i M̆v + Ḿh)Ğy

= H̀∼
i N̆v − V́ M̆yĞy = H̀∼

i N̆v − V́ N̆y ∈ L∞.

Proof of Lemma 5.2.3. We have

[

Ğy I
]

= M̆−1
y

[

N̆y M̆y

]

The right invertibility of
[

N̆y M̆y

]

implies that M̆−1
y is causal if Ğy is causal.

Now, it is given that H̀∼
i M̆v − V́1 M̆y ∈ zlH∞ and H̀∼

i M̆v − V́2 M̆y ∈ zl H∞.

This implies that (V́2 − V́1)M̆y ∈ zlH∞ and so that V́2 − V́1 is l-causal as M̆−1
y is

causal.

Since V́1 and V́2 are in L∞ and are samplers, this implies V́2−V́1 ∈ L2 [30]. So,

V́2−V́1 ∈ L2 and l-causal. It means V́2−V́1 ∈ zlH2. Hence, projL2\zl H2(V́1−V́2) =
0.

Proof of Proposition 5.2.4. Given condition 1 of Proposition 5.2.2, it follows from

Equation (5.80) that ‖Ğe‖L∞ is finite iff Ğeh := H̀∼
i Ğv − H̄o ŚĞy ∈ L∞.

Given condition 1-3 of Proposition 5.2.2, Ńh := H̀∼
i N̆v − V́ N̆y ∈ L∞. We

now show that every solution Ś ∈ zlH∞ has the form (5.2). Let Ś ∈ zl H∞ such

that Ğe ∈ zlH∞ (see Remark 5.2.1). Let Ğeh0 := H̀∼
i Ğv − H̄o ŚĞy. Clearly

Ğeh0 ∈ L∞ and H̀∼
i Ğv = H̀∼

i N̆v − H̀∼
i M̆vĞy = Ńh − ḾhĞy by Proposition

5.2.2. Therefore,

Ğeh0 = H̀∼
i Ğv − H̄o ŚĞy

Ğeh0 − Ńh = −ḾhĞy − H̄o ŚĞy

Since −ḾhĞy − H̄o ŚĞy is l-causal (as Ḿh + H̄o Ś ∈ zl H∞) and Ğeh0 − Ńh ∈ L∞,

we have Ğeh0 − Ńh ∈ zlH∞. Hence,

ḾhĞy + H̄o ŚĞy ∈ zlH∞

Using Ğy = M̆−1
y N̆y and Ḿh + H̄o Ś ∈ zlH∞, the above implies

(Ḿh + H̄o Ś)
[

Ğy I
]

= (Ḿh + H̄o Ś)M̆−1
y

[

N̆y M̆y

]

∈ zl H∞
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This implies (Ḿh + H̄o Ś)M̆−1
y ∈ zlH∞ as

[

N̆y M̆y

]

is right invertible in H∞.

Hence, we have that the Śα defined as

Śα := (Ḿh + H̄o Ś)M̆−1
y

is in zl H∞. From this Śα , the sampler Ś follows as

Ś = H̄−1
o (−Ḿh + Śα M̆y)

On the other hand, if Ś := H̄−1
o (Śα M̆y − Ḿh) where Śα ∈ zlH∞ then clearly

Ś ∈ zlH∞, Ğeh := H̀∼
i Ğv − H̄o ŚĞy = Ńh − Sα N̆y ∈ L∞ and Ğe ∈ L∞ (given

all conditions of Proposition 5.2.2 are satisfied).

In the end using Ś := H̄−1
o (Śα M̆y − Ḿh), we have

Ğe := Ğv − H̀ ŚĞy = Ğv − H̀i(Śα M̆y − Ḿh)Ğy

= Ğv + H̀i ḾhĞy − H̀i Śα N̆y

Note that Ḿh := H̀∼
i M̆v − V́ M̆y depends upon V́ which is not fixed. Therefore,

Ś and Ğe depend upon V́ and Śα . This may (wrongly) suggests that the parame-

terization of Ś and Ğe given in (5.2) and (5.3) is in two parameters. However, we

will show now that the parameterization of Ś and Ğe is in single parameter. Any

V́ ∈ L∞ (also implies V́ ∈ L2 [30]) satisfying Ḿh := H̀∼
i M̆v − V́ M̆y ∈ zlH∞ can

be represented as V́ = projL2\zl H2 V́ + projzl H2 V́ . Therefore,

Ś := H̄−1
o (Śα M̆y − Ḿh)

= H̄−1
o

(

Śα M̆y − H̀∼
i M̆v + V́ M̆y

)

= H̄−1
o

(

Śα M̆y − H̀∼
i M̆v + (projL2\zl H2 V́ + projzl H2 V́ )M̆y

)

= H̄−1
o

(

(Śα + projzl H2 V́ )M̆y − H̀∼
i M̆v + projL2\zl H2 V́ M̆y

)

Since projL2\zl H2 V́ is unique by Lemma 5.2.3, Ś is still parameterized by a new

single parameter Śα + projzl H2 V́ ∈ zlH∞.

Proof of Proposition 5.2.5. N̆y N̆∼
y is stable (by construction) and rational (As-

sumption A2). Also N̆y N̆∼
y has no unit circle zeros (Assumption A4). Therefore,

N̆y N̆∼
y has a spectral co-factorization W̆ W̆∼ where W̆ is bistable and bicausal

in H∞ (see e.g. [68]). This means W̆−1 N̆y is co-inner. As Ğy = M̆−1
y N̆y =

(W̆−1 M̆y)
−1(W̆−1 N̆y), we have a coprime factorization of Ğy with coprime fac-

tors W̆−1 M̆y and co-inner W̆−1 N̆y. In the rest of the proof we assume that N̆y is

co-inner without loss of generality.

By Proposition 5.2.2, there exists a solution to the stabilization problem i.e.

there exists an Ś ∈ zlH∞ such that Ğe ∈ L∞ iff all conditions of Proposition 5.2.2

are satisfied.
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As R :=
[

H̀∼
i

I − H̀i H̀
∼
i

]

satisfies R∼ R = I , we have

‖Ğv − H̀ ŚĞy‖L2 = ‖RĞv − R H̀i H̄o ŚĞy‖L2 =
∥

∥

∥

∥

[

H̀∼
i Ğv − H̄o ŚĞy

5
H̀

Ğv

]∥

∥

∥

∥

L2

Therefore, ‖Ğv − H̀ ŚĞy‖L2 is finite iff ‖H̀∼
i Ğv − H̄o ŚĞy‖L2 and ‖5

H̀
Ğv‖L2 are

finite. Since H̀∼
i Ğv − H̄o ŚĞy ∈ L∞ (by (5.80)) and is a sampler, it belong to L2

also (by Lemma 2.4.6). Therefore Ğe ∈ L2 iff 5
H̀

Ğv ∈ L2.

Since Ś ∈ zlH∞ and all conditions of Proposition 5.2.2 are satisfied, by Propo-

sition 5.2.4 we can parameterize Ś and Ğe ∈ L∞ in term of Śα ∈ zlH∞ as given

in (5.2) and (5.3) respectively. Define

Śo := arg inf
Śα∈zl H∞

‖Ğv + H̀i ḾhĞy − H̀i Śα N̆y‖.

Since Ğe ∈ L2, we use projections to say that Śo must satisfy the following:

〈

Ğe, H̀i Śα N̆y

〉

=
〈

Ğv + H̀i ḾhĞy − H̀i Śo N̆y, H̀i Śα N̆y

〉

=
〈

H̀∼
i N̆v N̆∼

y − V́ − Śo, Śα

〉

= 0

for all Śα ∈ zlH2. This can be achieved if we take Śo = Śα,opt. In particular

〈

Ğe,opt, H̀i Śα,opt N̆y

〉

=
〈

Ğv + H̀i ḾhĞy − H̀i Śα,opt N̆y, H̀i Śα,opt N̆y

〉

= 0,

Therefore (by Pythagoras theorem),

‖Ğv + H̀i ḾhĞy‖2

L2 = ‖Ğv + H̀i ḾhĞy − H̀i Śα,opt N̆y‖2

L2 + ‖H̀i Śα,opt N̆y‖2

L2

= ‖Ğe,opt‖2

L2 + ‖H̀i Śα,opt N̆y‖2

L2

Since H̀i is inner and N̆y is co-inner, we have (5.6).

Since H̀∼
i N̆v N̆∼

y − V́ ∈ L∞ ∩ L2, the Śα,opt of (5.5) is in L∞ ∩ L2 as well.

Hence Śopt ∈ L∞ ∩ L2.

5.B Proofs of the results in Section 5.3

Proof of (5.15). . We first write KG(τ, σ ) in such a form where we do not have to

worry about order of σ and τ as required in (5.14). Note that

C(τ )eAτ4−1
G
�e−Aσ B(σ ) = C(τ )eAτ4−1

G
(�+ ϒeAh −ϒeAh)e−Aσ B(σ )

= C(τ )eAτ4−1
G
(4G −ϒeAh)e−Aσ B(σ )

= C(τ )eA(τ−σ)B(σ )− C(τ )eAτ4−1
G
ϒeA(h−σ)B(σ )
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Similarly,

C(τ )eAτ4−1
G
ϒeA(h−σ)B(σ ) = C(τ )eA(τ−σ)B(σ )− C(τ )eAτ4−1

G
�e−Aσ B(σ )

Hence,

∫ h

0

KG(τ, σ )u(σ )dσ =
∫ τ

0

C(τ )eAτ4−1
G
�e−Aσ B(σ )u(σ )dσ

−
∫ h

τ

C(τ )eAτ4−1
G
ϒeA(h−σ)B(σ )u(σ )dσ

=
∫ τ

0

C(τ )eA(τ−σ)B(σ )u(σ )dσ

−
∫ τ

0

C(τ )eAτ4−1
G
ϒeA(h−σ)B(σ )u(σ )dσ

−
∫ h

τ
C(τ )eAτ4−1

G
ϒeA(h−σ)B(σ )u(σ )dσ

=
∫ τ

0

C(τ )eA(τ−σ)B(σ )u(σ )dσ

−
∫ h

0

C(τ )eAτ4−1
G
ϒeA(h−σ)B(σ )u(σ )dσ.

Similarly,

∫ h

0

KG(τ, σ )u(σ )dσ = −
∫ h

τ
C(τ )eA(τ−σ)B(σ )u(σ )dσ

+
∫ h

0

C(τ )eAτ4−1
G
�e−Aσ B(σ )u(σ )dσ.

Therefore, using the above expression of KG(τ, σ ), the output y(τ ) can be written

as (5.15).

Proof of Lemma 5.3.6. For any y = Gu, y1 ∈ L2[0, h), we have

〈y1, y〉 = 〈y1,Gu〉

=
∫ h

0

〈

y1(τ ),

(

Du(τ )+
∫ h

0

KG(τ, σ )u(σ )dσ

)〉

dτ

=
∫ h

0

〈y1(τ ), Du(τ )〉 dτ +
∫ h

0

〈

y1(τ ),

∫ h

0

KG(τ, σ )u(σ )dσ

〉

dτ

=
∫ h

0

〈

D∗y1(τ ), u(τ )
〉

dτ +
∫ h

0

∫ h

0

〈

y1(τ ), KG(τ, σ )u(σ )
〉

dσdτ

=
∫ h

0

〈

D∗y1(τ ), u(τ )
〉

dτ +
∫ h

0

∫ h

0

〈

KG(τ, σ )y1(τ ), u(σ )
〉

dσdτ
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=
∫ h

0

〈

D∗y1(τ ), u(τ )
〉

dτ +
∫ h

0

〈∫ h

0

KG(τ, σ )y1(τ )dτ, u(σ )

〉

dσ

=
∫ h

0

〈

D∗y1(τ ), u(τ )
〉

dτ +
∫ h

0

〈∫ h

0

KG(σ, τ )y1(σ )dσ, u(τ )

〉

dτ

=
∫ h

0

〈

D∗y1(τ )+
∫ h

0

KG(σ, τ )y1(σ )dσ, u(τ )

〉

dτ

=
〈

G∗y1, u
〉

where G∗y1(τ ) := D∗y1(τ )+
∫ h

0

∫ h

0 KG(σ, τ )y1(σ )dσ . Clearly,

KG(σ, τ ) =
{

B∗(σ )e−A∗σ�∗4−∗
G

eA∗τC∗(τ ) 0 ≤ τ < σ ≤ h

−B∗(σ )eA∗(h−σ)ϒ∗4−∗
G

eA∗τC∗(τ ) 0 ≤ σ < τ ≤ h

where 4∗
G

= �∗ + eA∗hϒ∗. Hence,

KG(σ, τ ) =
{

B∗(σ )e−A∗σ�∗4−∗
G

eA∗he−A∗(h−τ )C∗(τ ) 0 ≤ τ < σ ≤ h

−B∗(σ )e−A∗σ eA∗hϒ∗4−∗
G

eA∗τC∗(τ ) 0 ≤ σ < τ ≤ h

Now,

G∗ =
[ −A∗ C∗

−B∗ D∗

]

[

eA∗hϒ∗4−∗
G

�∗4−∗
G

eA∗h
]

as

4∗
G := eA∗hϒ∗4−∗

G
+�∗4−∗

G
eA∗h(e−A∗h) = 4∗

G4
−∗
G

= I .

This implies G∗ is a well-posed system. By Corollary 5.3.4, the above G∗ is equiv-

alent to the following system

G∗
n =

[ −A∗ C∗

−B∗ D∗

]

[

ϒ∗
d �∗

d

]

where
[

ϒ∗
d �∗

d

]

has full row rank, iff there exists an invertible matrix S such that

ϒ∗
d = SeA∗hϒ∗4−∗

G
(5.81)

�∗
d = S�∗4−∗

G
eA∗h . (5.82)

Now,

ϒ∗
d +�∗

de−A∗h = S(eA∗hϒ∗4−∗
G

+�∗4−∗
G
) = S

To show that S is invertible, consider
[

ϒ∗
d �∗

d

]

which has full row rank. This

implies there exists a non-zero matrix K such that

[

ϒ∗
d �∗

d

]

K = I
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This implies

S
[

eA∗hϒ∗4−∗
G

�∗4−∗
G

eA∗h
]

K = I

Since S is square matrix, the above equation says that S is invertible.

Substituting the value of S in (5.81), we have

ϒ∗
d�

∗ = �∗
dϒ

∗.

Therefore, G∗
n ≡ G∗ iff �ϒd = ϒ�d . We now show the existence of such ϒd

and �d . Since
[

� ϒ
]

∈ Cn×2n has maximal row rank, dim(Ker
[

� ϒ
]

) = n.

Hence there exists a matrix M ∈ Ker
[

� ϒ
]

⊂ C2n×n such that

[

� ϒ
]

M = 0

Partitioning M , we have

[

ϒd

−�d

]

= M

Proof of Lemma 5.3.16. If ŭ ∈ L2(T), we have

1

2π

∫ π

−π

∫ h

0

‖ŭ(ejθ ; σ)‖2
2dσdθ < ∞

This implies at almost all θ ,

‖ŭ(ejθ )‖2
2 :=

∫ h

0

‖ŭ(ejθ ; σ)‖2
2dσ < ∞

Using [15, theorem 0.10], we have

‖ f̆ (ejθ )‖2
2 :=

∫ h

0

‖ f̆ (ejθ ; τ )‖2
2dτ ≤ C‖ŭ(ejθ )‖2

2

at almost all θ . Now, we have

‖ f ‖2
2 = ‖ f̆ ‖2

2 := 1

2π

∫ π

−π
‖ f̆ (ejθ )‖2

2dθ

≤ 1

2π

∫ π

−π
C‖ŭ(ejθ )‖2

2dθ

= C‖ŭ‖2
2

= C‖u‖2
2
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Clearly,

‖ f ‖2
2

‖u‖2
2

≤ C

Therefore T ∈ L∞.

Using Lemma 2.5.8, T is causal. Therefore, T ∈ L∞ implies that T ∈ H∞.

Proof of Lemma 5.3.17. Since B ∈ C2([0, h),Cn×m), we have that the integral
∫ h

0
B(σ )B(σ )∗dσ is well-defined in Cn×n . Therefore,

∫ h

0

eA(h−σ)B(σ )B(σ )∗eA∗(h−σ) dσ

is a well-defined matrix (note that eA(h−σ) is a bounded function). Similarly, it can

be proved that

∫ h

0

eA∗τC∗(τ )C(τ )eAτ dτ

is a well-defined matrix. Since both of the integral above are non-negative, there

exist matrices B̄ and C̄ of the form given in (5.29).

Since D is a constant matrix, we have that

Ğ ∈ H∞ ⇐⇒ Ğ1 ∈ H∞

where Ğ1 is a system with STPBC

Ğ1(z) :=
[

A B(σ )

C(τ ) 0

]

[

�(z) ϒ(z)
]

Now using (5.15), we have

Ğ1 ∈ H∞ ⇐⇒ X̆ − Y̆ ∈ H∞

where

X̆(z)ŭ(z) := C(τ )

∫ τ

0

eA(τ−σ)B(σ )ŭ(z; σ) dσ, τ ∈ [0, h)

Y̆ (z)ŭ(z) := C(τ )eAτ (�(z)+ϒ(z)eAh)−1ϒ(z)

∫ h

0

eA(h−σ)B(σ )ŭ(z; σ) dσ.

As eAt is a continuous function, therefore, eA(τ−σ)
1(τ − σ) is bounded for all

τ ∈ [0, h) and σ ∈ [0, h). Here the step function 1(τ − σ) is 1 whenever τ ≥ σ

otherwise it is zero. Along with boundedness of B(σ )∀σ ∈ [0, h) and C(τ )∀τ ∈
[0, h) this implies X̆ ∈ H∞ by Lemma 5.3.16. Hence,

Ğ1 ∈ H∞ ⇐⇒ Y̆ ∈ H∞
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To check whether Y̆ ∈ H∞, define a zero order hold C̀ as

y̆(z) = C̀(z)x̄(z) : y̆(z; τ ) = C(τ )eAτ x̄(z) (5.83)

Clearly, C̀∗C̀ is a static discrete system given by

C̀∼C̀ = C̄∗C̄

Define a zero order hold V̀L := C̀C̄+ where C̄+ is the pseudo-inverse of the matrix

C̄ . Clearly V̀ ∼
L V̀L = C̄C̄+ i.e it is an orthogonal projection onto Im C̄ . Hence, V̀L

is stable. Since V̀L is causal (see Lemma 2.5.8), we have that V̀L ∈ H∞. Also, we

have V̀L V̀ ∼
L C̀ = C̀ .

Define a sampler B́ as

ȳ(z) = B́(z)x̆(z) : ȳ(z) =
∫ h

0

eA(h−σ)B(σ )x̆(z; σ)dσ (5.84)

Also, define a sampler V́R := B̄+ B́ where B̄+ is the pseudo-inverse of the matrix

B̄. Clearly, V́R V́ ∼
R = B̄+ B̄ i.e. it is an orthogonal projection onto (Ker B̄)⊥.

Hence, V́R is stable. Since V́R is causal (see Lemma 2.5.8), we have that V́R ∈ H∞.

Also, we have B́ V́ ∼
R V́R = B́.

Therefore, using V̀L V̀ ∼
L C̀ = C̀ and B́V́ ∼

R V́R = B́, we have

Y̆ = V̀L Ȳ V́R

where Ȳ := V̀ ∼
L Y̆ V́ ∼

R is discrete system given in state-space as

Ȳ =
(

eAh B̄

C̄ 0

)

Here, we used

(C̄+)∗C̀∼C̀ = (C̄+)∗C̄∗C̄ = (C̄C̄+)∗C̄ = (C̄C̄+)C̄ = C̄

B́ B́∼(B̄+)∗ = B̄ B̄∗(B̄+)∗ = B̄(B̄+ B̄)∗ = B̄(B̄+ B̄) = B̄.

which follows from the fact that C̄C̄+ and B̄+ B̄ are orthogonal projections.

Since V̀ ∼
L V̀L = C̄C̄+, V́R V́ ∼

R = B̄+ B̄ and V̀ ∼
L , V́ ∼

R ∈ H∞ (follows from

lemmas 2.5.3 and 2.5.6 and stability of V̀L , V́R), we have

Y̆ ∈ H∞ ⇐⇒ Ȳ ∈ H∞

Proof of Lemma 5.3.25. Using (5.15), we have

Ğ = D̆ + Y̆
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where

Y̆ (z)ŭ(z) := C(τ )eAτ (z I −ϒeAh)−1ϒ

∫ h

0

eA(h−σ)B(σ )ŭ(σ ) dσ.

Since eA(τ−σ)
1(τ − σ) ∈ L2[0, h) × L2[0, h), B ∈ L2[0, h) and C ∈ L2[0, h),

we have that D̆ ∈ H2 by Lemma 5.3.21. Since D̆ is static, we have that ‖D̆‖2

H2 =
1
h
‖D̆‖2

H S .

Since Ğ(z) is causal, Y̆ (z) is also causal. The formal series of causal Y̆ (z) has

the constant term

lim
z→∞

Y̆ (z) = 0.

Therefore, if Ğ ∈ H2 then by orthogonality between D̆ and Y̆ in the space H2, we

have

‖Ğ‖2

H2 = 1

h
‖D̆‖2

H S + ‖Y̆‖2

H2 .

The integral form of ‖D̆‖2
H S can be obtained by using ‖D̆‖2

H S = tr D̆ D̆∗.

Define a static hold V̀L := C̀C̄+ and a static sampler V́R := B̄+ B́ where +
denotes the pseudo-inverse operation, C̀ is defined in (5.83) and B́ is defined in

(5.84). Now proceeding as in the proof of Lemma 5.3.17, we have

‖Y̆‖H2 = ‖V̀L Ȳ V́R‖H2 = ‖Ȳ‖H2 .

5.C Proofs of the results in Section 5.4

Proof of Lemma 5.4.2. Due to observability of (Cy, A), there exists an L such that

A + LCy is Hurwitz [71, theorem 3.1]. Define L1 :=
[

0 L
]

. Now using output

injection, the left coprime factorization of Ğ :=
[

Ğv

Ğy

]

is M̆−1 N̆ where

[

N̆ M̆
]

=
[

A + L1C B + L1 D L1

ZC Z D Z

]

where C and D are defined in (5.40) and Z is an invertible complex matrix. As

a special case we choose Z = diag{I, Z y} where Z y is an invertible complex

matrix. Partitioning the output according to Ğv and Ğy and substituting the value

of L1 =
[

0 L
]

, we have

[

N̆v

N̆y
M̆

]

=





A + LCy B + L Dy 0 L

Cv 0 I 0

Z yCy Z y Dy 0 Z y



 .
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Clearly M̆ has a form

[

I M̆v

0 M̆y

]

and

M̆ =
[

I M̆v

0 M̆y

]

=





A + LCy 0 L

Cv I 0

Z yCy 0 Z y



 .

The controllability of the pair (A, B) helps in the construction of Bezout factors

of N̆ and M̆ . The construction of the Bezout factors is quite standard (see [70,

Chapter 5]). M̆y, M̆v, N̆y and N̆v belong to H∞ because e(A+LCy)h is Schur (see

Corollary 5.3.20).

Proof of Lemma 5.4.3. Note that Ny is an LCTI system with state-space

Ny =
[

A + LCy B + L Dy

Z yCy Z y Dy

]

.

where A + LCy is Hurwitz. Now, if we have N̆y(e
jθ )N̆∼

y (e
jθ ) > 0∀θ ∈ [−π, π ]

then NyN
∼
y > 0 and Ny(jω)Ny(jω)

∼ > 0 for all ω ∈ R including ∞. Here, Ny is

the system N̆y in time domain and Ny is the system Ny in the (classic) frequency

domain. As Z y is invertible and A + LCy is Hurwitz, Ny(jω)Ny(jω)
∼ > 0 for all

ω ∈ R including ∞ iff Dy has full row rank and

[

A + LCy − jωI B + L Dy

Z yCy Z y Dy

]

=
[

I L

0 Z y

] [

A − jωI B

Cy Dy

]

has full row rank for all ω ∈ R.

Proof of Lemma 5.4.5. The proof is quite standard, for completeness it is given

below. Let AL := A + LCy and BL := B + L Dy .

N̆v N̆∼
y =

[

AL BL

Cv 0

] [ −A∗
L (Z yCy)

∗

−B∗
L (Z y Dy)

∗

]

=





AL −BL B∗
L BL(Z y Dy)

∗

0 −A∗
L (Z yCy)

∗

Cv 0 0





Applying a state-transformation

[

I X

0 I

]

and using AL X + X A∗
L + BL B∗

L = 0

and BL(Z y Dy)
∗ + X (Z yCy)

∗ = 0 (follows from Lemma 5.4.4), we have

N̆v N̆∼
y =





AL AL X + X A∗
L + BL B∗

L BL(Z y Dy)
∗ + X (Z yCy)

∗

0 −A∗
L (Z yCy)

∗

Cv −Cv X 0





=





AL 0 0

0 −A∗
L (Z yCy)

∗

Cv −Cv X 0







178 Chapter 5. Relaxed causal sampling

=
[ −A∗

L (Z yCy)
∗

−CvX 0

]

Proof of Proposition 5.4.6. Define H̄cs(z) := C̄H H̄s(z). Note that

H̀∼(z)H̀(z) = H̄s(z)
∼C̄∗

H C̄H H̄s(z) = H̄∼
cs (z)H̄cs(z).

As EeAH h is Schur (Assumption A6), H̄∼
cs (e

jθ )H̄cs(e
jθ ) > 0∀θ ∈ [−π, π ] is

equivalent to say that the matrix

R(ejθ ) :=
[

EeAH h − ejθ I EeAH h BH

C̄H C̄H BH

]

has full column rank for every θ ∈ [−π, π ]. Now, R(ejθ ) can be written as

R(ejθ ) =
[

EeAH h − ejθ I BH

C̄H 0

] [

I BH

0 ejθ I

]

.

Since

[

I BH

0 ejθ I

]

is invertible for all θ ∈ [−π, π ], we have that

rank R(ejθ ) = rank

[

EeAH h − ejθ I BH

C̄H 0

]

(5.85)

for all θ ∈ [−π, π ]. Now, the proof of equivalence of condition 1 and 2 is well

known and the proof of equivalence of condition 2 and 3 is essentially given in [32,

Theorem 4.1]. Note that if H̀ = H̀i H̄o, then a spectral factor W (z) of H̀∼(z)H̀(z)
is H̄o and if W (z) is a spectral factor of H̀∼(z)H̀(z) then H̄o(z) = W (z) and

H̀i(z) = H̀(z)W−1(z).

Now, we prove the equivalence of condition 2 and 4. Note that

H̄cs(z) = C̄H BH + C̄H (z I − EeAH h)−1 EeAH h BH

= C̄H (z I − EeAH h)−1(z I − EeAH h + EeAH h)BH

= zC̄H (z I − EeAH h)−1 BH .

This implies,

H̄∼
cs (z)H̄cs(z) = B∗

H

(

1

z
I − (EeAH h)∗

)−1

C̄∗
H C̄H (z I − EeAH h)−1 BH .

Using the above equation and [32, Theorem 4.1], the existence of the spectral

factorization of H̀∼(z)H̀(z) = H̄∼
cs (z)H̄cs(z) is equivalent to 4.

Now, we prove the equivalence of condition 5 with the rest. Note that H̀ ∈ H∞

is the same as H ∈ H∞. Condition 1 says that H̀ is left invertible in L∞. Therefore

by Parseval, H : ℓ2 → L2 is left invertible. Now,

‖ū‖2 = ‖H−LHū‖ ≤ ‖H−L‖L∞‖Hū‖2



5.C. Proofs of the results in Section 5.4 179

where H−L is a left inverse of H. In this case, condition 5 holds for ǫ = ‖H−L‖L∞ .

On the other hand, if there exists an ǫ such that

‖Hū‖2 ≥ ǫ‖ū‖2 ∀ū ∈ ℓ2,

then by taking lifted z-transform we have

‖H̀Z(ū)‖2 ≥ ǫ‖Z(ū)‖2.

This implies that H̀ is left invertible in L∞ (see [47, lemma 4.47, 4.48(b)]). Hence,

H̄∼
cs (e

jθ )H̄cs(e
jθ ) = H̀∼(ejθ )H̀(ejθ ) > 0 (condition 3). This again is equivalent to

condition 1 as proved earlier.

Proof of Lemma 5.4.8. If A6 is satisfied, then F = 0 makes (E + BH F)eAH h

Schur. However, there may be many such F other than zero. The state equation of

the Hold H̀ can be written as

˙̆x(τ ) = AH x̆(τ )+ BHJ0+ ū, zx̆(0) = Ex̆(h−), τ ∈ [0, h)

y̆(τ ) = CH x̆(τ )

Using the standard trick of state feedback for constructing coprime factors, we

define

v̄ := ū − Fx̆(0−)

= ū − 1

z
FJh- x̆(τ ).

Therefore,

˙̆x(τ ) = AH x̆(τ )+ BHJ0+(v̄ + Fx̆(0−)), zx̆(0) = Ex̆(h−), τ ∈ [0, h)

y̆(τ ) = CH x̆(τ )

Now using Lemma 5.3.31, we have

˙̆x1(τ ) = AH x̆1(τ )+ BHJ0+ v̄ , z(x̆1(0)− BH Fx̆1(0
−)) = Ex̆(h−)

y̆(τ ) = CH x̆1(τ )

Now, consider the boundary condition

z(x̆1(0)− BH Fx̆1(0
−)) = Ex̆1(h

−)

⇐⇒ z(x̆1(0)− 1

z
BH Fx̆1(h

−)) = Ex̆1(h
−)

⇐⇒ zx̆1(0) = Ex̆1(h
−)+ BH Fx̆1(h

−) = (E + BH F)x̆1(h
−)

Now, ū = M̄Hv̄ , y̆ = ǸHv̄ . Since F is such that (E + BH F)eAH h is Schur,

therefore M̄H, ǸH ∈ H∞ (see Corollary 5.3.20).
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The mapping M̄−1
H from ū to v̄ is given by

M̄−1
H (z) =

[

AH BHJ0+

− 1
z
J ∗

h- F I

]

[

z I −E
]

Since EeAH h is Schur (see Assumption A6), discrete system M̄−1
H is in H∞ (as

M̄−1
H (z) is analytic and bounded in C\D). Now, we have

M̄−1
H M̄H + 0ǸH = I

Therefore, M̄H and ǸH are right coprime.

Proof of Lemma 5.4.10. For some invertible complex matrix Z , our aim here is to

make ǸH Z an inner matrix i.e (ǸH Z)∼ ǸH Z = I . By Lemma 5.3.6, the conjugate

of the ǸH is the sampler Ǹ∼
H with

Ǹ∼
H (z) = J ∗

0+

[ −A∗
H C∗

H

−B∗
H 0

]

[

z(E + BH F)∗ −I
]

.

To find the Z such that (ǸH Z)∼ ǸH Z = I , we first consider

Ǹ∼
H (z)ǸH(z) = J ∗

0+





−A∗
H C∗

H CH 0

0 AH BH

−B∗
H 0 0





[

z�0 ϒ0

]

J0+

where �0 :=
[

(E + BH F)∗ 0

0 I

]

and ϒ0 := −
[

I 0

0 E + BH F

]

.

Applying a time varying state transform T (t) =
[

I Q(t)

0 I

]

where Q(t) sat-

isfy the differential Lyapunov equation

Q̇(t) = −A∗
H Q(t)− Q(t)AH − C∗

H CH , (5.86)

we have

Ǹ∼
H (z)ǸH(z) = J ∗

0+





−A∗
H 0 Q(t)BH

0 AH BH

−B∗
H B∗

H Q(t) 0





[

z�0T −1(0) ϒ0T −1(h)
]

J0+

Now, the boundary condition of Ǹ∼
H (z)ǸH(z) is given by

[

z

[

(E + BH F)∗ 0

0 I

] [

I −Q0

0 I

]

−
[

I 0

0 E + BH F

] [

I −Qh

0 I

]]
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which can be rearranged as

[

z

[

(E + BH F)∗ −(E + BH F)∗Q0

0 I

]

−
[

I −Qh

0 E + BH F

]]

.

Here Q0 := Q(0) and Qh := Q(h). To decouple the boundary condition (meaning

block diagonal here), pre-multiply both side the above by

S :=
[

I (E + BH F)∗ Q0

0 I

]

Pre-multiplication with S does not change the system (see Corollary 5.3.4), there-

fore we have the boundary condition

[

z

[

(E + BH F)∗ 0

0 I

]

−
[

I −Qh + (E + BH F)∗Q0(E + BH F)

0 E + BH F

]]

The condition

(E + BH F)∗Q0(E + BH F)− Qh = 0 (5.87)

will lead to decoupled STPBC.

From Lemma 5.4.9, the solution of (5.86) with initial condition Q(0) = Q0 is

given by

Q(t) = R1(t)Q0 R∗
1(t)− R3(t)

where R1(t) := e−A∗
H t , and R3(t) :=

∫ t

0 e−A∗
H sC∗

H CH e−AH s ds. Now using

decoupling condition (5.87), we have

Q(h) = R1(h)Q0 R∗
1(h)− R3(h) = (E + BH F)∗Q0(E + BH F).

The above equation can be written in Q0 alone as

Q0 = R1(h)
−1
(

(E + BH F)∗Q0(E + BH F)+ R3(h)
)

R1(h)
−∗

= R1(h)
−1(E + BH F)∗Q0(E + BH F)R1(h)

−∗ + C̄∗
H C̄H (5.88)

As (AH ,CH ) is assumed observable (Assumption A8), C̄∗
H C̄H > 0 [71, theorem

3.3]. Also, (E + BH F)R1(h)
−∗ is Schur because F is assumed to be chosen

that way. Therefore, there exists a unique solution Q0 > 0 of discrete Lyapunov

equation (5.88).

This value of Q0 renders

Ǹ∼
H (z)ǸH(z) = J ∗

0+





−A∗
H 0 Q(t)BH

0 AH BH

−B∗
H B∗

H Q(t) 0





[

z�0 ϒ0

]

J0+
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with decoupled boundary condition. Next, we look for a matrix F such that

Ǹ∼
H (z)ǸH(z) is a static (and invertible also) discrete system. Using Lemma 5.3.30

Ǹ∼
H (z)ǸH(z) = − B∗

H (z(E + BH F)∗ − e−A∗
H h)−1z(E + BH F)∗Q0 BH

+ B∗
H Q0(z I − (E + BH F)eAH h)−1zBH

Since,

B∗
H Q0(z I − (E + BH F)eAH h)−1zBH

= B∗
H Q0(I + z−1(E + BH F)eAH h(I − z−1(E + BH F)eAH h)−1)BH

= B∗
H Q0 BH + B∗

H Q0(E + BH F)eAH h(z I − (E + BH F)eAH h)−1 BH

This implies that if we choose F such that B∗
H Q0(E + BH F) = 0, then

Ǹ∼
H (z)ǸH(z) = B∗

H Q0 BH

which is a static discrete system.

Since Q0 > 0 and BH has full column-rank, the matrix B∗
H Q0 BH is invertible,

hence

F = −(B∗
H Q0 BH )

−1 B∗
H Q0 E

and ǸH(z)(B
∗
H Q0 BH )

− 1
2 is the desired inner factor.

To prove that F = −(B∗
H Q0 BH )

−1 B∗
H Q0 E makes (E + BH F)eAH h Schur,

we substitute this value of F in (5.88). Hence,

(E + BH F)∗Q0(E + BH F) =E∗Q0 E − E∗Q0 Bx Q0 E

− E∗Q0 Bx Q0 E + E∗Q0 Bx Q0 Bx Q0 E

=E∗Q0 E − E∗Q0 Bx Q0 E

where we used Bx := BH (B
∗
H Q0 BH )

−1 B∗
H and that Bx Q0 Bx = Bx . Therefore,

Q0 =R1(h)
−1 E∗(Q0 − Q0 BH (B

∗
H Q0 BH )

−1 B∗
H Q0)E R1(h)

−∗ + C̄∗
H C̄H

By Lemma 5.4.7, Assumption A3 is satisfied as assumptions A6–A8 are satisfied.

Now, if Assumption A3 is satisfied then there exists a unique solution Q0 such that

(E + BH F)eAH h is Schur matrix (see Proposition 5.4.6).

Proof of Lemma 5.4.11. Note that C̀H is in H∞ as it is causal and its hold function

is in L2 (see lemmas 2.4.7 and 2.5.6). Also, C̀∼
H C̀H is a discrete system given by

C̀∼
H C̀H = C̄∗

H C̄H =
∫ h

0

eA∗
H τC∗

H CH eAH τ dτ. (5.89)
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Hence, V̀H = C̀H C̄+
H . Note that matrix C̄H is a finite domain operator (hence

closed), therefore (C̄+
H )

∗ = (C̄∗
H )

+ and C̄H = (C̄∗
H )

+(C̄∗
H C̄H ) [5, lemma 4.1].

Now V̀ ∼
H V̀H is a discrete system given by

V̀ ∼
H V̀H = (C̄+

H )
∗C̀∼

H C̀H C̄+
H = (C̄+

H )
∗C̄∗

H C̄H C̄+
H = C̄H C̄+

H

Therefore, V̀ ∼
H V̀H is an orthogonal projection onto the space (Ker V̀ ∼

H V̀H )
⊥ =

Im ŌC̄H
. Since ŌC̄H

is a static discrete system, it is in H∞. Similarly, we have

V̀H V̀ ∼
H C̀H = C̀H C̄+

H (C̄
+
H )

∗C̀∼
H C̀H = C̀H C̄+

H (C̄
+
H )

∗C̄∗
H C̄H

= C̀H C̄+
H C̄H .

It follows from (5.89) that (Ker ŌC̄H
)⊥ = (Ker C̀H )

⊥. Since the static discrete

system C̄+
H C̄H is an orthogonal projection onto (Ker ŌC̄H

)⊥ = (Ker C̀H )
⊥, we

have

V̀H V̀ ∼
H C̀H = C̀H C̄+

H C̄H = C̀H . (5.90)

Therefore, V̀H V̀ ∼
H maps the Im C̀H to itself. Now, from (5.46) and (5.90) we have

V̀H V̀ ∼
H H̀ = V̀H V̀ ∼

H C̀H H̄s = C̀H H̄s = H̀ .

Now,

V̀ ∼
H H̀ = (C̄+

H )
∗C̀∼

H H̀ = (C̄∗
H )

+C̄∗
H C̄H H̄s = C̄H H̄s = H̄cs .

Proof of Lemma 5.4.14. If assumptions A6–A8 are satisfied then H̀i and H̄o in

H∞ exist (see Lemma 5.4.7). Now, using Lemma 5.4.11, we have

H̀ = V̀H H̄cs .

Similarly, using lemma 5.4.10 and 5.4.13, we have

H̀ = H̀i H̄o = V̀H H̄ics H̄o.

Therefore, we have

V̀H H̄cs = V̀H H̄ics H̄o.

Since V̀ ∼
H V̀H is an orthogonal projection onto the space (Ker V̀ ∼

H V̀H )
⊥ = Im C̄H

(see Lemma 5.4.11), we have

H̄cs = H̄ics H̄o.
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Proof of Lemma 5.4.16. Using (5.55), we have

(I − H̀i H̀
∼
i )Ğv ∈ L∞ ⇐⇒ (I − V̀H H̄cs H̄+

cs V̀ ∼
H )Ğv ∈ L∞

Since V̀ ∼
H V̀H is an orthogonal projection onto the space (Ker V̀ ∼

H V̀H )
⊥ = Im C̄H

and

[

V̀ ∼
H

I − V̀H V̀ ∼
H

]

is inner, we have

(I − H̀i H̀
∼
i )Ğv ∈ L∞ ⇐⇒

[

V̀ ∼
H

I − V̀H V̀ ∼
H

]

(I − V̀H H̄cs H̄+
cs V̀ ∼

H )Ğv ∈ L∞

⇐⇒
[

V̀ ∼
H − H̄cs H̄+

cs V̀ ∼
H

I − V̀H V̀ ∼
H

]

Ğv ∈ L∞

Since V̀H is a zero order hold, V̀H and V̀ ∼
H are causal (see Example 2.5.5).

Therefore, if Ğv is causal then (I − V̀H V̀ ∼
H )Ğv ∈ L∞ implies (I − V̀H V̀ ∼

H )Ğv ∈
H∞.

Proof of Lemma 5.4.21. Since D̄§, defined in Lemma 5.4.19, is invertible and sat-

isfies D̄§C̄H BH =
[

I

0

]

, there exists a matrix X such that

(D̄§)−1 =
[

D̄+

D̄⊥

]−1

=
[

C̄H BH X
]

.

Similarly, as D̄§ is invertible, the system

[

H̄ L
cs

H̄⊥
cs

]

has an inverse

[

H̄ L
cs

H̄⊥
cs

]−1

=
(

EeAH h BH Lcs

C̄H C̄H BH X

)

=
[

H̄cs P̄
]

where P̄ :=
(

EeAH h Lcs

C̄H X

)

. The systems

[

H̄ L
cs

H̄⊥
cs

]−1

and P̄ are in H∞ because

EeAH h is Schur (Assumption A6). Multiplying both sides of the above by I −
H̄cs H̄+

cs , we have

(I − H̄cs H̄+
cs )

[

H̄ L
cs

H̄⊥
cs

]−1

= (I − H̄cs H̄+
cs )
[

H̄cs P̄
]

Note that existence of H̄+
cs in L∞ is guaranteed by assumptions A6–A8. As (I −

H̄cs H̄+
cs )H̄cs = 0, the above implies

(I − H̄cs H̄+
cs )

[

H̄ L
cs

H̄⊥
cs

]−1

=
[

0 W̄cs

]
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where W̄cs := (I − H̄cs H̄+
cs )P̄ . Therefore,

(I − H̄cs H̄+
cs ) =

[

0 W̄cs

]

[

H̄ L
cs

H̄⊥
cs

]

= W̄cs H̄⊥
cs

Since P̄ and (I − H̄cs H̄+
cs ) are in L∞, we have that W̄cs is in L∞.

To prove that W̄cs is left invertible consider

H̄⊥
cs W̄cs = H̄⊥

cs (I − H̄cs H̄+
cs )P̄

= H̄⊥
cs P̄ = I

This implies H̄⊥
cs ∈ L∞ is a left inverse of W̄cs .

Proof of Theorem 5.4.23. From Lemma 5.4.16, we have

(I − H̀i H̀
∼
i )Ğv ∈ L∞ ⇐⇒

[

(I − H̄cs H̄+
cs )V̀

∼
H

I − V̀H V̀ ∼
H

]

Ğv ∈ L∞

Using Lemma 5.4.21, we have

(I − H̄cs H̄+
cs )V̀

∼
H Ğv ∈ L∞ ⇐⇒ W̄cs H̄⊥

cs V̀ ∼
H Ğv ∈ L∞

⇐⇒ H̄⊥
cs V̀ ∼

H Ğv ∈ L∞

where we used the invertibility of the system W̄cs in L∞ in the last step.

Note that V̀ ∼
H and V̀H are causal as V̀H is a zero order hold (see Example 2.5.5).

Since Ğv, V̀H , V̀ ∼
H and H̄⊥

cs are causal, the systems H̄⊥
cs V̀ ∼

H Ğv and (I − V̀H V̀ ∼
H )Ğv

are causal as well. Now the results follows from the fact that a causal and stable

system belong to H∞.

Proof of Lemma 5.4.26. Using (5.15), we have

Ğu(z) = T̆a(z)+ T̆b(z)

for the mapping T̆a and T̆b defined as

T̆a(z)ŭ(z) :=
∫ τ

0

CueAu(τ−σ)Bŭ(z; σ) dσ

T̆b(z)ŭ(z) := CvueAuτ (z I − eAu h)−1

∫ h

0

eAu(h−σ)Bu ŭ(z; σ) dσ

Therefore,

V̀ ∼
H (z)T̆b(z)ŭ(z) =(C̄∗

H )
+
∫ h

0

eA∗
H τC∗

H CvueAuτ dτ

× (z I − eAu h)−1

∫ h

0

eAu(h−σ)Bu ŭ(z; σ) dσ
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=(C̄∗
H )

+ Pu(z I − eAu h)−1

∫ h

0

eAu(h−σ)Bu ŭ(z; σ) dσ

=J ∗
0+

[

Au Bu

− (C̄∗
H )

+ Pu 0

]

[

z I −I
]

ŭ(z)

Clearly eAu(τ−σ)1(τ − σ) is bounded on τ ∈ [0, h) and σ ∈ [0, h). By Lemma

5.3.16 this implies, T̆a ∈ H∞. Since T̆a ∈ H∞ and V̀ ∼
H ∈ H∞ (as V̀ ∼

H is a zero

order hold), we have that V̀ ∼
H T̆a and (I − V̀H V̀ ∼

H )T̆a belongs to H∞. Therefore,

(I − V̀H V̀ ∼
H )Ğu ∈ H∞ ⇐⇒ T̆b − V̀H V̀ ∼

H T̆b ∈ H∞

Now using (5.15) again, we have

(T̆b(z)− V̀H (z)V̀
∼
H (z)T̆b(z))ŭ(z) = T̆2(z)ŭ(z)

where

T̆2(z)ŭ(z) :=
(

CvueAuτ − CH eAH τ (C̄H )
+(C̄∗

H )
+ Pu

)

(z I − eAu h)−1

∫ h

0

eAu(h−σ)Bu ŭ(z; σ) dσ

To check whether T̆2 belongs to H∞ or not, we aim here to find a discrete system

which is in H∞ iff T̆2 is in H∞. To this end, define a zero order hold C̀L as

y̆(z) = C̀L(z)x̄(z) : y̆(z; τ ) =
(

CvueAuτ − CH eAH τ (C̄H )
+(C̄∗

H )
+ Pu

)

x̄(z)

Clearly, C̀∗
L C̀L is a static discrete system given by

C̀∗
L C̀L =C̄∗

vuC̄vu − P∗
u C̄+

H (C̄
∗
H )

+ Pu − P∗
u C̄+

H (C̄
∗
H )

+ Pu

+ P∗
u C̄+

H (C̄
∗
H )

+(C̄∗
H C̄H )C̄

+
H (C̄

∗
H )

+ Pu

Since C̄+
H C̄H is an orthogonal projection onto the space (Ker C̄H )

⊥ and (C̄∗
H )

+ =
(C̄+

H )
∗, we have that

C̄+
H C̄H (C̄

+
H (C̄

∗
H )

+) = C̄+
H (C̄

∗
H )

+ and ((C̄∗
H )

+C̄∗
H )(C̄H C̄+

H ) = C̄H C̄+
H .

Therefore,

C̄+
H

(

((C̄∗
H )

+C̄∗
H )(C̄H C̄+

H )
)

(C̄∗
H )

+ = C̄+
H C̄H C̄+

H (C̄
∗
H )

+

= (C̄+
H C̄H )C̄

+
H (C̄

∗
H )

+

= C̄+
H (C̄

∗
H )

+

Hence,

C̀∼
L C̀L = C̄∗

L C̄L
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where C̄L is a matrix which satisfies

C̄∗
L C̄L = C̄∗

vuC̄vu − P∗
u C̄+

H (C̄
∗
H )

+ Pu .

Define a zero order hold V̀L := C̀L C̄+
L where C̄+

L is the pseudo-inverse of the

matrix C̄L . Clearly V̀ ∼
L V̀L = C̄L C̄+

L i.e it is an orthogonal projection onto Im C̄L .

Also, we have V̀L V̀ ∼
L C̀L = C̀L .

Define a sampler B́u as

ȳ(z) = B́u(z)x̆(z) : ȳ(z) =
∫ h

0

eAu(h−σ)Bu x̆(z; σ)dσ

Also, define a sampler V́R := B̄+
u B́u where B̄+

u is the pseudo-inverse of the matrix

B̄u . Clearly, V́R V́ ∼
R = B̄+

u B̄u i.e. it is an orthogonal projection onto (Ker B̄u)
⊥.

Also, we have B́u V́ ∼
R V́R = B́u .

Therefore, using V̀L V̀ ∼
L C̀L = C̀L and B́u V́ ∼

R V́R = B́u , we have

T̆2 = V̀L T̄2V́R

where T̄2 := V̀ ∼
L T̆2V́ ∼

R is discrete system given in state-space as

T̄2 =
(

eAu h B̄u

C̄L 0

)

Here, we used

(C̄+
L )

∗C̀∼
L C̀L = (C̄+

L )
∗C̄∗

L C̄L = (C̄L C̄+
L )

∗C̄L = (C̄L C̄+
L )C̄L = C̄L

B́u B́∼
u (B̄

+
u )

∗ = B̄u B̄∗
u (B̄

+
u )

∗ = B̄u(B̄
+
u B̄u)

∗ = B̄u(B̄
+
u B̄u) = B̄u .

which follows from the fact that C̄L C̄+
L and B̄+

u B̄u are orthogonal projections.

Clearly, V̀ ∼
L , V́ ∼

R ∈ L∞ and they are causal (see lemmas 2.5.3 and 2.5.6),

therefore V̀ ∼
L , V́ ∼

R ∈ H∞.

Since V̀ ∼
L V̀L = C̄L C̄+

L and V́R V́ ∼
R = B̄+ B̄ and C̄L C̄+

L and B̄+
u B̄u are orthog-

onal projections, we have that

T̆2 ∈ H∞ ⇐⇒ T̄2 ∈ H∞

Note that if (A, B) is controllable then (eAu h, B̄u) is controllable (see Lemma

5.4.25). Then T̄2 ∈ H∞ iff C̄L = 0. Now, C̄L = 0 iff C̄∗
L C̄L = 0, which is

equivalent to C̄∗
vuC̄vu − P∗

u C̄+
H (C̄

∗
H )

+ Pu = 0. Note that C̄+
H (C̄

∗
H )

+ = (C̄∗
H C̄H )

+

because C̄H is a closed operator [5].

Proof of Lemma 5.4.27. If assumptions A7–A8 are satisfied then H̄⊥
cs ∈ H∞ ex-

ists (see Lemma 5.4.19). Now, similar to the proof of Lemma 5.4.26, we have

H̄⊥
cs V̀ ∼

H Ğu ∈ H∞ ⇐⇒ H̄⊥
cs V̀ ∼

H T̆b ∈ H∞
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where

V̀ ∼
H (z)T̆b(z) = J ∗

0+

[

Au Bu

− (C̄∗
H )

+ Pu 0

]

[

z I −I
]

Also similar to the proof of Lemma 5.4.26, we have

H̄⊥
cs V̀ ∼

H Ğu ∈ H∞ ⇐⇒ H̄⊥
cs T̄ ∈ H∞.

where T̄ is a discrete system with state space

T̄ :=
(

eAu h B̄u

− (C̄∗
H )

+ Pu 0

)

Using the above and the state-space representation of H̄⊥
cs given in Lemma 5.4.19,

we have

H̄⊥
cs T̄ =





Al −Bl(C̄
∗
H )

+ Pu 0

0 eAu h B̄u

− D̄⊥C̄H −D̄⊥(C̄∗
H )

+ Pu 0





where Al := EeAH h − EeAH h BH D̄+C̄H − Lcs D̄⊥C̄H and Bl := EeAH h BH D̄+ +
Lcs D̄⊥. Apply a state transform

[

I Xl

0 I

]

such that

Al Xl − Xle
Au h + Bl(C̄

∗
H )

+ Pu = 0 (5.91)

Note that the eigenvalues of EeAH h − EeAH h BH D̄+C̄H which are unobservable

from D̄⊥C̄H are the invariant zeros of the H̄cs (see Lemma 5.4.19(3)). Therefore,

by Assumption A9 and the suitable choice of Lcs (see Lemma 5.4.19), Al and

eAu h have no common eigenvalues. Hence, a unique solution of the Sylvester

equation (5.91) exists. The state transformation leads to the following state-space

representation of H̄⊥
cs T̄ .

H̄⊥
cs T̄ =





Al 0 Xl B̄u

0 eAu h B̄u

− D̄⊥C̄H D̄⊥C̄H Xl − D̄⊥(C̄∗
H )

+ Pu 0



 .

Note that if (A, B) is controllable then (eAu h, B̄u) is controllable (see Lemma

5.4.25). Then the right hand side of the above is in H∞ iff all unstable modes are

un-observable. As all unstable modes of Al are already unobservable from D̄⊥C̄H ,

we have that H̄⊥
cs V̀ ∼

H Ğu ∈ H∞ iff

D̄⊥C̄H Xl − D̄⊥(C̄∗
H )

+ Pu = 0. (5.92)

Xl happens to be independent of Lcs if H̄⊥
cs V̀ ∼

H Ğu ∈ H∞. This is shown below.

Al Xl − Xle
Au h + Bl(C̄

∗
H )

+ Pu



5.C. Proofs of the results in Section 5.4 189

=
(

EeAH h − EeAH h BH D̄+C̄H − Lcs D̄⊥C̄H

)

Xl − Xle
Au h

+ (EeAH h BH D̄+ + Lcs D̄⊥)(C̄∗
H )

+ Pu

=
(

EeAH h − EeAH h BH D̄+C̄H

)

Xl + EeAH h BH D̄+(C̄∗
H )

+ Pu

− Lcs

(

D̄⊥C̄H Xl − D̄⊥(C̄∗
H )

+ Pu

)

.

If H̄⊥
cs V̀ ∼

H Ğu ∈ H∞ then using (5.92), Al Xl − Xle
Au h + Bl(C̄

∗
H )

+ Pu equals

(

EeAH h − EeAH h BH D̄+C̄H

)

Xl + EeAH h BH D̄+(C̄∗
H )

+ Pu .

Proof of Lemma 5.4.36. We have

H̀∼
i (z)M̆v(z) = J ∗

0+





−A∗
H C∗

H Cv 0

0 A + LCy L

−(BH Z)∗ 0 0





[

z�p −I
]

and

−V́ (z)M̆y(z) = J ∗
0+





−A∗
H −P(τ )LCy −P(τ )L

0 A + LCy L

−(BH Z)∗ 0 0





[

z�p −I
]

where �p :=
[

(E + BH F)∗ 0

0 I

]

. Hence,

Ḿh(z) = J ∗
0+





−A∗
H C∗

H Cv − P(τ )LCy −P(τ )L

0 A + LCy L

−(BH Z)∗ 0 0





[

z�p −I
]

Using a time-varying state transform T (τ ) =
[

I P1(τ )

0 I

]

, where P1(τ ) satisfy

Ṗ1(τ )+ A∗
H P1(τ )+ P1(τ )(A + LCy)+ C∗

H Cv − P(τ )LCy = 0,

Now, we have the boundary condition

[

z

[

(E + BH F)∗ −(E + BH F)∗ P1(0)

0 I

]

−
[

I −P1(h)

0 I

]]

Decoupling the boundary condition by premultiplying with matrix

[

I P1(h)

0 I

]

,

we have
[

z

[

(E + BH F)∗ −(E + BH F)∗ P1(0)− P1(h)

0 I

]

−
[

I 0

0 I

]]
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Therefore (E + BH F)∗ P1(0) = −P1(h), would guarantee de-coupled states.

If we take P1(τ ) = P(τ ), we have

Ṗ(τ )+ A∗
H P(τ )+ P(τ )A + C∗

H Cv = 0,

with boundary condition (E + BH F)∗ P(0) = −P(h), which we know is true by

(5.64). Hence

Ḿh(z) = J ∗
0+





−A∗
H 0 0

0 A + LCy L

−(BH Z)∗ −(BH Z)∗ P(τ ) 0





[

z�p −I
]

= J ∗
0+

[

A + LCy L

−(BH Z)∗ P0 0

]

[

z I −I
]

where we used T (τ )

[−P(τ )L

L

]

=
[

0

L

]

. Since A + LCy is Hurwitz, e(A+LCy)h is

Schur. Therefore, it follows from Corollary 5.3.20 that Ḿh ∈ H∞.

Proof of Corollary 5.4.37. Using Lemma 5.4.5, we have

H̀∼
i (z)N̆v(z)N̆

∼
y (z)− V́ (z)

= J ∗
0+





A p

[

0

(Z yCy)
∗

]

C p 0





[

z�p −I
]

− V́ (z)

= J ∗
0+









−A∗
H 0 0 −P(τ )L Z−1

y

0 −A∗
H −C∗

H Cv X 0

0 0 −A∗
L (Z yCy)

∗

−(BH Z)∗ −(BH Z)∗ 0 0









[

z�1 −I
]

where

�1 :=





(E + BH F)∗ 0 0

0 (E + BH F)∗ 0

0 0 I



 .

Applying a transform T =





I 0 0

I I 0

0 0 I



, we have

H̀∼
i (z)N̆v(z)N̆

∼
y (z)− V́ (z)

= J ∗
0+









−A∗
H 0 0 −P(τ )L Z−1

y

0 −A∗
H −C∗

H Cv X −P(τ )L Z−1
y

0 0 −A∗
L (Z yCy)

∗

0 −(BH Z)∗ 0 0









[

z�2 −T −1
]



5.C. Proofs of the results in Section 5.4 191

where

�2 :=





(E + BH F)∗ 0 0

−(E + BH F)∗ (E + BH F)∗ 0

0 0 I





Multiplying the boundary condition by a invertible matrix does not change system,

therefore we multiply with S := T , therefore we have

H̀∼
i (z)N̆v(z)N̆

∼
y (z)− V́ (z)

= J ∗
0+









−A∗
H 0 0 −P(τ )L Z−1

y

0 −A∗
H −C∗

H Cv X −P(τ )L Z−1
y

0 0 −A∗
L (Z yCy)

∗

0 −(BH Z)∗ 0 0









[

z�1 −I
]

= J ∗
0+

[

A p BP

C p 0

]

[

z�p −I
]

Proof of Theorem 5.4.38. To obtain Śα,opt consider the STPBC realization of Ý :=
H̀∼

i N̆v N̆∼
y − V́ given in Corollary 5.4.37 i.e.

Ý (z) = J ∗
0+

[

A p Bp

C p 0

]

[

z�p −I
]

where all eigenvalues of e−Aph�p are in the region |z| > 1. Define a sampler

T́ (z)ŭ(z) :=
∫ h

0

eAp(h−σ)Bŭ(z; σ)dσ.

To calculate Śα,opt = projzl H2 Ý consider

Ý ŭ(z) =C p(z�p − eAph)−1T́ (z)ŭ(z)

=C p(ze−Ap h�p − I )−1T́ ŭ(z)

= − C p

(

I + ze−Ap h�p + · · · + (ze−Aph�p)
l
)

T́ ŭ(z)

− C p(ze−Aph�p)
l+1

(

I + (ze−Ap h�p)+ · · ·
)

T́ ŭ(z)

= projzl H2 Ý (z)ŭ(z)+ C p(ze−Aph�p)
l+1(ze−Aph�p − I )−1T́ ŭ(z)

= projzl H2 Ý (z)ŭ(z)+ C p(ze−Aph�p)
l+1(z�p − eAph)−1T́ ŭ(z)

Now,

projzl H2 Ý (z) = Ý (z)− C p(ze−Ap h�p)
l+1(z�p − eAph)−1T́ ŭ(z)
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= J0+

[

A p Bp

C p(1 − (ze−Ap h�p)
l+1) 0

]

[

z�p −I
]

The rest of the proof follows from Lemma 5.4.4, Lemma 5.4.10, Theorem

5.4.28, and Corollary 5.4.31.

Proof of Lemma 5.4.41. The integral equalities in (5.74) and (5.76) follows from

Lemma 5.3.29.

Since Ğv + H̀i ḾhĞy is causal and in L∞, it is in H∞. By Lemma 5.3.23, this

further implies Ğv + H̀i ḾhĞy ∈ H2 as its STPBC has no feed through term. Using

Lemma 5.3.25, we have

‖Ğv + H̀i ḾhĞy‖2

H2 = 1

h
‖D̆‖2

H S + ‖Ȳ‖2

H2

where

Ȳ =
(

ϒeeAeh ϒe B̄e

C̄e 0

)

=





Ams Qm B̄ms

0 eAu h B̄mu

C̄ms C̄vu 0





where Qm :=





M1ueAu h

0

0



. Now, Ȳ ∈ H2 as Ğv + H̀i ḾhĞy ∈ H2 and ‖D̆‖H S is

finite.

Since Ams is Schur and e−Au h has all its poles in the closed unit disk of the

complex plane, therefore the Sylvester equation (5.79) has an unique solution Xm .

Now, applying a state transform T :=
[

I −Xm

0 I

]

, we have

Ȳ =





Ams 0 B̄ms − Xm B̄mu

0 eAu h B̄mu

C̄ms C̄ms Xm + C̄mu 0



 .

Since Ȳ ∈ H2,

(

eAu h B̄mu

C̄ms Xm + C̄mu 0

)

= 0. Therefore,

Ȳ =
(

Ams B̄ms − Xm B̄mu

C̄ms 0

)

This shows that the STPBC of the system Ğv + H̀i ḾhĞy given in (5.73) contains

unobservable or uncontrollable poles that lie in the region |z| ≥ 1 of the complex

plane.

Since Ams is Schur, the rest of the proof follows from Lemma 5.3.28.
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Proof of Lemma 5.4.42. For a given integer k, we have ‖zk Ğ‖L2 = ‖Ğ‖L2 for a

system Ğ. Therefore,

‖ projL2\zl H2(H̀∼
i N̆v N̆∼

y − V́ )‖L2 = ‖ Ṕ‖L2

where

Ṕ(z) := 1

z(l+1)
projL2\zl H2(H̀∼

i N̆v N̆∼
y − V́ ).

Let Ý := H̀∼
i N̆v N̆∼

y − V́ . Then using (5.69) and (5.70), the adjoints are

Ý ∼(z) =
[ −A∗

p −C∗
P

B∗
p 0

]

[

z I −�∗
p

]

J0+

Ṕ∼(z) =
[ −A∗

p −(C p(e
−Aph�p)

l+1)∗

B∗
p 0

]

[

z I −�∗
p

]

J0+ .

The samplers Ý and Ṕ are anti-causal systems in L∞, therefore their conju-

gates are holds in H∞. Using Lemma 5.3.23 this further implies that holds Ý ∼ and

Ṕ∼ are in H2 as well. Therefore, ‖Ý ∼‖H2 = ‖Ý‖L2 and ‖ Ṕ∼‖H2 = ‖ Ṕ‖L2 can be

obtained by Lemma 5.3.26.

To calculate the norms we need to evaluate the integral

B̄p B̄∗
p =

∫ h

0

e−Apτ Bp(τ )Bp(τ )
∗e−A∗

pτdτ

The above integral is not straight forward as B(τ ) is not constant but a function

of τ . The rest of the proof is mainly devoted to evaluation of the above integral.

Using [28, Theorem 1] and A p = −
[

A∗
H C∗

H Cv X

0 A∗
L

]

, we have that

e−Apτ = e

[

A∗
H C∗

H Cv X

0 A∗
L

]

τ

=
[

eA∗
H τ T1(τ )

0 eA∗
Lτ

]

where T1(τ ) :=
∫ τ

0 eA∗
H (τ−σ)C∗

H Cv XeALσ dσ . Recall AL := A+ LCy . Therefore,

using P(τ ) given in Lemma 5.4.34 as

P(τ ) = e−A∗
H τ P0e−Aτ −

∫ τ

0

e−A∗
HσC∗

H Cve−Aσ dσ,

and Bp(τ ) =
[−P(τ )L Z−1

y

(Z yCy)
∗

]

, we have that

e−Apτ Bp(τ ) = e
−
[−A∗

H −C∗
H Cv X

0 −A∗
L

]

τ[−P(τ )L Z−1
y

(Z yCy)
∗

]
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=
[−P0e−Aτ L Z−1

y + T2(τ )L Z−1
y + T1(τ )(Z yCy)

∗

eALτ (Z yCy)
∗

]

where T2(τ ) := eA∗
H τ
∫ τ

0 e−A∗
HσC∗

H Cve
−Aσ dσ . Using [28, Theorem 1] again , we

can show that the above is equal to

e−Apτ Bp(τ ) = PzeAzτ Bz

Using the above, we have that

∫ h

0

e−Apτ Bp(τ )Bp(τ )
∗e−A∗

pτdτ = Pz

(∫ h

0

eAzτ Bz B∗
z eA∗

z τdτ

)

P∗
z

= Pz3
∗
22(A

∗
z , B∗

z )312(A
∗
z , B∗

z )P
∗
z

where 322 and 312 are defined in Lemma 5.3.29. Now, using Lemma 5.3.26 we

have

‖Ý ∼‖H2 =
∥

∥

∥

∥

∥

(

�∗
P e−A∗

ph −C∗
p

B̄∗
p 0

)∥

∥

∥

∥

∥

H2

,

‖ Ṕ∼‖H2 =
∥

∥

∥

∥

∥

(

�∗
P e−A∗

ph −C∗
pm

B̄∗
p 0

)∥

∥

∥

∥

∥

H2

The rest of the proof follows from Lemma 5.3.28.
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Conclusions and

Recommendations

A system theoretic analysis of the signal processing problem lead to solutions with

maximum generality. In this thesis, we used the sampled data system theory to

analyze the signal processing problems. The lifting is a main technical tool in the

sampled data system theory. The lifting technique enables us to treat discrete and

analog signals in a common framework. In this way we avoid any prior assumption

on the input analog signal. In fact, we never have to worry about bandlimitedness

of input signals and Shannon’s sampling theorem during our analysis and design

processes. We also used system norm to measure our reconstruction performance.

In this thesis, we obtained a computationally efficient way to compute fre-

quency truncated norms. We also obtained optimal non-causal downsamplers-

and-holds, and optimal relaxed causal samplers. The proofs of optimality are done

by using sampled-data system theory.

In Chapter 3, we presented a method to compute the frequency truncated norms.

These norms are required for reconstruction error calculation in the sampled-data

signal processing. We expressed these norms in terms of the matrix logarithm for

stable and unstable proper rational linear continuous time invariant system (LCTI)

systems. We also showed a relationship of the frequency truncated norms with the

H2 norm of an LCTI system. The result of this chapter can be applied to other

areas of system theory like model reduction.

In Chapter 4, we obtained a solution to the optimal non-causal downsampling

problem using sampled-data system theory. Specifically, we obtained an optimal

non-causal stable downsampler-and-hold given the fast sampler and the signal

model in the sampled-data setup. Here we used L2 and L∞ optimality criteria.

In the end, we also described a way to do optimal non-causal downsampling in

the presence of noise. We also obtained expressions for the error for different

optimality criteria in the optimal non-causal downsampling problem.

In Chapter 4, we obtained a solution to the optimal relaxed causal sampling
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problem i.e. we obtained a stable optimal relaxed-causal sampler given a hold and

a LCTI signal model. We provided the conditions of existence of the solution

of the optimal relaxed causal sampling problem. We also gave some fundamen-

tals of state space representation with two point boundary conditions (STPBC).

STPBC representations are a useful way to represent a large class h-time shift in-

variant system. It includes all proper rational LCTI system as well. We also used

this representation to solve optimal sampling problems and we obtained an easily

computable optimal relaxed causal sampler and the optimal error.

6.1 Recommendations

From the topics that are discussed in the thesis, there are lot of potential improve-

ments and problems for further research. These are discussed below.

1. A closed form expression for frequency truncated norm provided in Chap-

ter 3 is sufficient if frequency truncation happens at finite number of fre-

quencies. However, to obtain a closed form expression of reconstruction

error in the L2 downsampling problem, we need to calculated the norm of

a frequency response that is truncated at infinite number of frequencies. A

closed form expression for such a response can be good objective for further

research.

2. In Chapter 4, we just obtained the optimal hybrid interpolator in the lifted

frequency domain at each θ ∈ [−π, π ]. However, we ignored the ques-

tion of the Lebesgue measurability of the optimal hybrid interpolator. Thus

a measure theoretic formulation of the optimal downsampling solutions in

Chapter 4 can be investigated further.

3. In Chapter 4, downsampling of a discrete signal is done by an integer down-

sampling factor. A natural enhancement is to do optimal downsampling by

a rational downsampling factor.

4. Also, the method we provided in Chapter 5 to compute the optimal relaxed

causal sampler and the error for the systems given by the STPBC represen-

tation, have some numerical issues. We have not explored these issues in

this thesis. Hence, there are some serious numerical issues to be looked at.

5. In Chapter 5, we took a causal signal model and hold. The effect of relaxing

this causality constraint on the optimal relaxed causal sampler needs further

investigation.



Appendix A

State-space representation

This appendix is a short review of state-space representations. State-space repre-

sentation is an internal description of systems where we can define the system out-

puts at a given time in terms of some internal variables (known as state-variables)

and inputs of the systems up to the given time. If number of state variables are

finite then such systems are known as finite-dimensional systems. For details

see [71, chapter 3,21], [57, appendix A] and [27, chapter 13].

A.1 Continuous time system

If an analog system G is a finite-dimensional linear continuous time invariant sys-

tem then we can write the description of system in term of the following differential

equations

y = Gu :

{

dx
dt

= Ax + Bu

y = Cx + Du
(A.1)

where x(t) ∈ Rn is called state, u(t) ∈ Rm and y(t) ∈ Rp. Here the A, B, C and

D are constant matrices.

The system G given by (A.1) is represented by the following notation in the

thesis

G =
[

A B

C D

]

.

Also in the Laplace domain the system G is represented as

G(s) = D + C(s I − A)−1 B.

The above is also known as the transfer-function of the system G.
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A.2 Discrete time system

If a discrete system Ḡ is a finite-dimensional linear shift invariant system then we

can write the description of system in term of the following difference equations

ȳ = Ḡū :

{

x̄[n + 1] = Ax̄[n] + Bū[n] n ∈ Z

ȳ[n] = Cx̄[n] + Dū[n]
(A.2)

where x[n] ∈ Rn is called state, u[n] ∈ Rm and y[n] ∈ Rp. Here the A, B, C and

D are constant matrices.

The system Ḡ given by (A.2) is represented by the following notation in the

thesis

G =
(

A B

C D

)

.

Also in the z-domain the system Ḡ is represented as

Ḡ(z) = D + C(z I − A)−1 B.

The above is also known as transfer-function of the system G.

The Invariant zeros of the discrete system Ḡ given by state-space (A.2) are

those values of z ∈ C where the matrix

[

A − z I B

C D

]

looses its normal rank (see [14, §8.4.2] and [71, Chapter 3]). The above matrix is

known as the Rosenbrock system matrix.

For the definition of controllability, observability, detectability and stabiliz-

ability of systems represented in state-space see [57, appendix A] or [71, chapter

3,21].



List of notations

δ Dirac delta function

δ̄ For all integer n, δ̄[n] :=
{

1 n = 0

0 n 6= 0

⌈x⌉ the smallest integer greater than or equal to x ∈ R

⌊x⌋ the largest integer less than or equal to x ∈ R

1(t) 1(t) :=
{

1 t ≥ 0

0 t < 0

1A(t) For a given set A, indicator function 1A(t) :=
{

1 t ∈ A

0 t /∈ A

Arg principal argument function

C the set of complex numbers

C− open left half complex plane

Cn For a positive integer n, Cn := {







w0

...

wn−1






|w0, · · · , wn−1 ∈ C}

C2(B,H) {x : B → H | x is continuous &
∫

B‖x(t)‖2
H

dt < ∞} (here B ⊆ R and

H is a Hilbert space)

D unit disk {z ∈ C : |z| < 1}

D closed unit disk {z ∈ C : |z| ≤ 1}

exp{A} eA

‖A‖H S the Hilbert-Schmidt norm of operator A

Im A image of operator A
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‖A‖ induced norm of operator A

‖A‖∞ induced norm of operator A

ImA closure of image of operator A

j
√

−1

Ker A kernel of operator A

L2[0, h) space of square integrable functions defined on [0, h)

LCTI linear continuous time invariant

LDTI Linear discrete time invariant

M the set of integers {0, 1, · · · ,M − 1} for any M ∈ Z+

N set of positive integers and zero

NA For an operator A, NA :=
{

{0, 1, · · · , rank A − 1} If rank A is finite

N If rank A is infinite

projA orthogonal projector on Hilbert space A

R̄− R− ∪ {0}

R̄+ R+ ∪ {0}

R the set of real numbers

R− the set negative real numbers

R+ the set positive real numbers

rank A rank of operator A

ROC Region of convergence

sinc sinc(x) := sin(πx)
πx

sinch sinch(x) := sin( π
h

x)
π
h

x

SVD singular value decomposition

T unit circle {z ∈ C : |z| = 1}

ωk
θ+2πk

h
for all θ ∈ [−π, π ] and k ∈ Z

Z set of integers

Z+ set of positive integers
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Z+
l set of all integers greater than or equal to integer l

Z− set of negative integers

Z−
l set of all integers smaller than integer l
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Summary

The main objective in this thesis is to design optimal samplers, downsamplers and

interpolators (holds) which are required in signal processing. The sampled-data

system theory is used to fulfill this objective in a generic setup.

Signal processing, which includes signal transmission, storage and analysis,

plays a significant role in a human society. Since ages mankind is trying to find

better and better means of signal transmission. Sending signal over a long distance

was a challenge in ancient time. However with the advent of electrical/optical

signals and electromagnetic waves, signal transmission is a matter of seconds now

even over long distances. In the later half of the twentieth century, the digital

revolution changed the scenario of signal processing. Digital signal processing

provides better quality, low cost, ease of implementation and reconfigurability. In

digital signal transmission the original analog signal is sampled using a sampler

before transmission. At the receiver side, the received signal is processed digitally

to remove unwanted signals like noise and then it is interpolated using a hold to

obtain a reconstructed signal. This reconstructed signal must look like our original

analog signal. Most of the systems like mobile, TV etc. nowadays use digital

signal transmission techniques. Using digital techniques it is also easy to store and

analyze signals.

Digital signal processing needs sampling of the original signal. Therefore,

a fundamental question is: can we reconstruct the original signal from its sam-

ples using a hold? This is known as the signal reconstruction problem. The most

famous answer of the signal reconstruction problem is given by Shannon’s sam-

pling theorem for the bandlimited analog signals. Bandlimitedness rarely happens

in practice therefore Shannon’s sampling theorem is not enough unless we apply

some filters to make our analog signal bandlimited. Hence, researchers started

looking at the signal reconstruction problem as a mathematical optimization prob-

lem from system theoretical viewpoint i.e. how to design samplers and holds such

that the reconstructed signal resembles the original signal (measured in some norm

sense). Here it is assumed that the spectrum of the signals are known. Sampled-

data system theory is such an approach i.e. it is used to solve the signal recon-

struction problem where the assumption of bandlimitedness is not required. It also

enables us to obtain the solution with greater generality. A distinctive feature of

the sampled-data system theory is that it optimizes the analog performance. This
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approach is much closer to reality as most of the signals we use are analog in na-

ture and utilized in the analog domain. Another distinctive feature of sampled-data

system theory is the use of signal model to describe the spectrum of the original

analog signals. The choice of signal model depends upon several factors like ease

of implementation, accuracy required in signal reconstruction and the information

available about signals. One advantage of using sampled-data system theory in

the design process is that we can calculate the reconstruction error without any

practical implementation.

Calculation of the reconstruction error boils down to calculation of the fre-

quency truncated norm if the signal models are linear continuous time invariant

(LCTI). In Chapter 3, we obtained closed form expressions to calculate the fre-

quency truncated norms if the LCTI signal model is given by state-space. These

methods are easy to implement in Matlab. The use of these closed form expres-

sions to calculate the frequency truncated norms is not restricted to sampled-data

system theory but also to other areas of system theory like model reduction.

Downsampling of the sampled signal is required in several signal processing

applications like audio, image etc. This complicates our signal reconstruction

problem because there is a downsampler in between the sampler and hold, and

we have have to work with multiple sampling rates. In Chapter 4 we provide a

general formulation and solution of optimal downsampling in the sampled-data

setup for all linear continuous time invariant signal models. Here we allow non-

causal solutions. The effect of noise on the downsampling is also discussed in this

chapter.

Non-causal solutions that have access to the infinite future, provide a theoret-

ical limit to our solutions. However, they are rarely used in practice because of

their unrealizability. Most of the time we design sampler and hold with causal-

ity or relaxed causality constraint. This is because it is practically impossible to

have access to all future inputs at a given point of time. The constraint of causal-

ity/relaxed causality makes our problem a bit more difficult, but also more inter-

esting. In Chapter 5, we provide a frequency domain abstract and implementable

state-space solution to the optimal sampler design problem with a relaxed causality

constraint.

In this thesis, we used sampled data system theory to answer downsampler

and (relaxed causal) sampler design problems. However, the sampled-data system

theory has the potential to answer many more interesting optimization problems

arising in signal processing.



Samenvatting

Het hoofddoel van dit proefschrift is het ontwerp van optimale samplers, down-

samplers en holds die kunnen worden gebruikt in de signaalverwerking. Met be-

hulp van de theorie van sampled-datasystemen wordt deze doelstelling op generie-

ke wijze verwezenlijkt.

Signaalverwerking, waaronder signaaloverdracht, opslag en analyse van signa-

len, speelt een belangrijke rol in de samenleving. Sinds eeuwen is de mens bezig

betere manieren van signaaloverdracht te bedenken. Het verzenden van signalen

over een lange afstand was lange tijd een uitdaging. Echter met het gebruik van

elektrische / optische signalen en elektromagnetische golven, is de duur van sig-

naaloverdracht, ook over lange afstanden, een kwestie van seconden geworden. In

de tweede helft van de twintigste eeuw heeft de digitale revolutie de signaalver-

werking fundamenteel veranderd. Digitale signaalverwerking zorgt voor betere

kwaliteit, lagere kosten, gemak van implementatie en herconfigureerbaarheid. In

digitale signaaltransmissie wordt het oorspronkelijke analoge signaal eerst bemon-

sterd met behulp van een sampler en dan verzonden. Aan de ontvangstzijde wordt

vervolgens het ontvangen signaal digitaal gefilterd om ongewenste componenten

zoals ruis te verwijderen en daarna wordt het signaal met behulp van een hold

geı̈nterpoleerd tot een analoog signaal. Dit gereconstrueerde signaal moet er uit-

zien als het oorspronkelijke analoge signaal. In de meeste systemen van vandaag

de dag, zoals mobiele telefonie, TV etc. worden deze digitale technieken toege-

past. Deze digitale technieken zijn ook van nut voor het opslaan van signalen en

het analyseren ervan.

Digitale signaalverwerking vereist bemonsteren van het onderliggende analoge

signaal. Daarom is een fundamentele vraag: “kunnen we het onderliggende sig-

naal reconstrueren aan de hand van de monsters?” Dit staat bekend als het signaal-

reconstructie probleem. Het bekendste antwoord hierop is Shannon’s bemonste-

ringsstelling voor band-begrensde analoge signalen. Echter, band-begrensd komt

in de praktijk maar nauwelijks voor en Shannon’s stelling volstaat daarom niet,

tenzij we met een aantal filters het analoge signaal vooraf band-begrensd maken.

Om deze ongewenste situatie te omzeilen zijn onderzoekers gaan kijken naar het

algemene signaal-reconstructieprobleem als een wiskundig optimalisatieprobleem

vanuit een systeemtheoretisch oogpunt, namelijk hoe kunnen we sampler en hold

zodanig ontwerpen dat het gereconstrueerde signaal optimaal goed lijkt op het ori-
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ginele signaal (gemeten in een bepaalde norm). In deze opzet wordt aangenomen

dat het spectrum van de signalen bekend is. Sampled-data systeemtheorie is een

dergelijke aanpak en deze vereist niet dat de signalen bandbegrensd zijn. Het stelt

ons in staat om een oplossing te bepalen in grotere algemeenheid. Een onderschei-

dend kenmerk van de sampled-data systeemtheorie is dat het de analoge prestaties

optimaliseert. Deze aanpak komt veel dichter bij werkelijkheid omdat de meeste

signalen die we gebruiken analoog van aard zijn en worden gebruikt in het analoge

domein. Een ander onderscheidend kenmerk van sampled-data systeemtheorie is

het gebruik van een signaalmodel van het spectrum van het oorspronkelijke ana-

loge proces. De keuze van signaalmodel is afhankelijk van verschillende factoren,

zoals gemak van implementatie, nauwkeurigheid van de beschrijving en de be-

schikbaarheid van informatie over de signalen. Een voordeel van het gebruik van

deze theorie is dat in het ontwerpproces de reconstructiefout kan worden berekend

zonder praktische implementatie.

Berekening van de reconstructiefout komt neer op het berekenen van een fre-

quentie afgekapte norm indien het signaalmodel lineair en continue-tijdinvariant

is. In hoofdstuk 3 zijn gesloten uitdrukkingen verkregen van deze frequentie-

afgekapte normen, voor de gevallen dat het signaalmodel een eindig-dimensionale

toestandsrepresentatie heeft. De methoden zijn eenvoudig te implementeren in

Matlab. Het gebruik van deze gesloten uitdrukkingen is niet beperkt tot sampled-

dataproblemen, maar is ook op andere gebieden van de systeemtheorie van toepas-

sing, zoals modelreductie.

Downsampling van bemonsterde signalen is nodig in verschillende toepassin-

gen zoals audio, beeld etc. Downsampling bemoeilijkt het signaal-reconstructie

probleem, want de aanwezigheid van een downsampler, tussen sampler en hold,

betekent dat we moeten werken met meerdere bemonsteringsfrequenties. In hoofd-

stuk 4 geven we een algemene formulering en oplossing van het optimale down-

samplingprobleem voor alle lineaire continue-tijdinvariante signaalmodellen. We

laten hier niet-causale oplossingen toe. Het effect van ruis op downsampling wordt

ook besproken in dit hoofdstuk.

Niet-causale systemen die toegang hebben tot de oneindige toekomst geven

een theoretische limiet aan aan onze ontwerpproblemen, maar ze zijn vaak van

weinig praktisch nut omdat ze niet geı̈mplenteerd kunnen worden. Vaker willen

we samplers en holds ontwerpen die causaal zijn of in een beperkte mate kunnen

anticiperen. Dit is omdat het praktisch onmogelijk is om toegang te hebben tot

de volledige toekomst van ingangssignalen. De beperking tot causale of beperkt

anticiperende samplers maakt ons ontwerpprobleem gecompliceerder, maar ook

interessanter. In hoofdstuk 5 geven we een abstracte frequentiedomeinoplossing

en een toepasbare toestandsrepresentatie-oplossing van het ontwerp van optimale

samplers met beperkte anticipatie.

In dit proefschrift hebben we sampled-data systeemtheorie gebruikt om down-

samplers en samplers met beperkte anticipatie te ontwerpen. Echter, deze sampled-

datatheorie heeft de potentie om nog vele andere interessante optimalisatieproble-

men in de signaalverwerking te ontrafelen.
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